Radiomic versus Convolutional Neural Networks Analysis for Classification of Contrast-enhancing Lesions at Multiparametric Breast MRI.

Radiology

From the Departments of Diagnostic and Interventional Radiology (D.T., S.S., H.S., C.K.) and Institute of Imaging and Computer Vision (C.H., D.M.), RWTH Aachen University, Aachen, Pauwelsstr 30, 52074 Aachen, Germany.

Published: February 2019

Purpose To compare the diagnostic performance of radiomic analysis (RA) and a convolutional neural network (CNN) to radiologists for classification of contrast agent-enhancing lesions as benign or malignant at multiparametric breast MRI. Materials and Methods Between August 2011 and August 2015, 447 patients with 1294 enhancing lesions (787 malignant, 507 benign; median size, 15 mm ± 20) were evaluated. Lesions were manually segmented by one breast radiologist. RA was performed by using L1 regularization and principal component analysis. CNN used a deep residual neural network with 34 layers. All algorithms were also retrained on half the number of lesions (n = 647). Machine interpretations were compared with prospective interpretations by three breast radiologists. Standard of reference was histologic analysis or follow-up. Areas under the receiver operating curve (AUCs) were used to compare diagnostic performance. Results CNN trained on the full cohort was superior to training on the half-size cohort (AUC, 0.88 vs 0.83, respectively; P = .01), but there was no difference for RA and L1 regularization (AUC, 0.81 vs 0.80, respectively; P = .76) or RA and principal component analysis (AUC, 0.78 vs 0.78, respectively; P = .93). By using the full cohort, CNN performance (AUC, 0.88; 95% confidence interval: 0.86, 0.89) was better than RA and L1 regularization (AUC, 0.81; 95% confidence interval: 0.79, 0.83; P < .001) and RA and principal component analysis (AUC, 0.78; 95% confidence interval: 0.76, 0.80; P < .001). However, CNN was inferior to breast radiologist interpretation (AUC, 0.98; 95% confidence interval: 0.96, 0.99; P < .001). Conclusion A convolutional neural network was superior to radiomic analysis for classification of enhancing lesions as benign or malignant at multiparametric breast MRI. Both approaches were inferior to radiologists' performance; however, more training data will further improve performance of convolutional neural network, but not that of radiomics algorithms. © RSNA, 2018 Online supplemental material is available for this article.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2018181352DOI Listing

Publication Analysis

Top Keywords

convolutional neural
16
neural network
16
95% confidence
16
confidence interval
16
multiparametric breast
12
breast mri
12
principal component
12
component analysis
12
analysis classification
8
compare diagnostic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!