The main aim of this study was to investigate the impact of a hybrid disintegration process with the use of alkalization and freezing by dry ice on waste activated sludge (WAS) and on the course of the process of mesophilic methane fermentation. In order to achieve the mentioned goal, various analytical techniques were used for assessment of the sludge disintegration and its influence on the further biogas production. As a result of the investigation, it was found that the chemical-thermal process of destruction of WAS results in an increased concentration of organic compounds in the supernatant (expressed as a change in the value of the soluble chemical oxygen demand - SCOD). The use of disintegrated WAS and feeding of the material into the fermentation digester influences, depending on its proportion by volume, the production of biogas and the biogas yield (higher biogas production by ca. 39% in comparison to blank sample was achieved with the appropriately disintegrated sludge). The hybrid process is simple and easy to implement in the full technical scale and does not influence or change the pH value of the sludge feed into the fermentation chambers (the dry ice neutralizes the high pH of the sludge). Additionally, it was determined that the herein developed process, can improve hygienization of the digested sludge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10934529.2018.1474579 | DOI Listing |
Adv Colloid Interface Sci
January 2025
Department of Biotechnology, School of Applied Sciences and Technology, BLDE (Deemed to be University), Bangaramma Sajjan Campus, Vijayapura 586103, India; Department of Basic Sciences, Faculty of Engineering and Technology, CMR University, Bangalore 562149, India. Electronic address:
Biosurfactants are biodegradable, non-toxic, and environmentally beneficial substances that are produced by microorganisms. Due to their chemical characteristics and stability in various environmental circumstances, biosurfactants are low-molecular-weight, surface-active molecules of great industrial importance. The choice of the producer microbe, kind of substrate, and purification technique determine the chemistry of a biosurfactant and its production cost.
View Article and Find Full Text PDFJ Contam Hydrol
January 2025
International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:
The concern of potential toxic elements (PTEs) contamination in the river ecosystem is growing due to anthropological activity. The contents of seven PTEs in sediments from the Balu River channel were analyzed using atomic absorption spectroscopy (AAS) and an environmental risk model. Several PTEs were found in the sediment at high levels, including zinc (Zn), copper (Cu), arsenic (As), lead (Pb), cadmium (Cd), nickel (Ni), and mercury (Hg), that might pose a risk to human and ecological health.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China. Electronic address:
This study aims to address the challenge of detoxifying ginkgolic acid and transform it from waste into a valuable resource. By using pseudo-template molecular imprinting technology to chemically modify polysaccharide materials, we developed a polysaccharide-based molecular imprinted material (MMCC-CD/CS-MIP) for the targeted separation and controlled release of ginkgolic acid. Under optimal conditions, MMCC-CD/CS-MIP demonstrated excellent adsorption performance (Q = 47.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
Recent advancements in activated carbon production involve molten salt activation using a eutectic mixture of ZnCl-NaCl-KCl. This study explores the production of activated carbon from fruit waste, specifically walnut shells, using a 60:20:20 mol % eutectic mixture. Optimal conditions were identified through response surface methodology, with 400 °C and a salt-to-biomass ratio of 10 g/g, yielding a surface area of 276 m/g.
View Article and Find Full Text PDFPhytomedicine
December 2024
Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China. Electronic address:
Background: Presently, the mitigation and governance of obesity have surfaced as significant public health dilemmas on a global scale. A wealth of studies indicated that the host gut microbiota is instrumental in regulating the interplay between high-fat diet (HFD) intake and the pathogenesis of obesity. Physiological premature fruit drop, a major byproduct of citrus, is rich in a variety of bioactive constituents, yet its potential has remained underutilized for an extended period.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!