AI Article Synopsis

  • Researchers investigated how different NHC ligands affect the performance of Ru(II)-NHC catalysts in hydride-transfer reactions, particularly in transfer hydrogenation.
  • The study compared various precatalysts, showing that an electron-rich ligand led to improved performance in ketone reduction, while a bulky triazolylidene ligand excelled in aldehyde reduction.
  • This is the first detailed analysis focusing on the stereoelectronic properties of NHC ligands in Ru(II)-catalyzed reactions across diverse unsaturated substrates.

Article Abstract

In an effort to develop efficient Ru(II)-NHC-based catalyst considering their stereoelectronic effect for hydride-transfer reaction, we found that the ancillary NHC ligand can play a significant role in its catalytic performance. This effect is demonstrated by comparing the activity of two different types of orthometalated precatalysts of general formula [( p-cymene)(NHC)Ru(X)] (NHC = an imidazolylidene-based ImNHC, compound 2a-c, or a mesoionic triazolylidene-based tzNHC, compound 4) in transfer hydrogenation of carbonyl substrates. The electron-rich precatalyst, 2c, containing p-OMe-substituted NHC ligand performed significantly better than both unsubstituted complex 2a and p-CF substituted electron-poor complex 2b in ketone reduction. Whereas bulky mesoionic triazolylidene ligand containing complex 4 was found to be superior catalyst for aldehyde reduction and the precatalyst 2a is more suitable for the selective transfer hydrogenation of a wide range of aromatic aldimines to amines. To the best of our knowledge, this is the first systematic study on the effect of stereoelectronic tuning of ancillary orthometalated NHC ligand in Ru(II)-catalyzed transfer hydrogenations of various types of unsaturated compounds with broad substrate scope.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.8b02246DOI Listing

Publication Analysis

Top Keywords

transfer hydrogenation
12
nhc ligand
12
unsaturated compounds
8
ancillary ligand
4
ligand cyclometalated
4
cyclometalated ruii-nhc-catalyzed
4
transfer
4
ruii-nhc-catalyzed transfer
4
hydrogenation unsaturated
4
compounds effort
4

Similar Publications

The mechanism of discriminative aminoacylation by isoleucyl-tRNA synthetase based on wobble nucleotide recognition.

Nat Commun

December 2024

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).

View Article and Find Full Text PDF

Hydrogen gas (H) can be produced via entirely solar-driven photocatalytic water splitting (PWS). A promising set of organic materials for facilitating PWS are the so-called inverted singlet-triplet, INVEST, materials. Inversion of the singlet (S) and triplet (T) energies reduces the population of triplet states, which are otherwise destructive under photocatalytic conditions.

View Article and Find Full Text PDF

Titin is the third contractile filament in the sarcomere, and it plays a critical role in sarcomere integrity and both passive and active tension. Unlike the thick and thin filaments, which are polymers of myosin and actin, respectively, titin is a single protein that spans from Z-disk to M-line. The N2A region within titin has been identified as a signaling hub for the muscle and is shown to be involved in multiple interactions.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are considered advanced class materials due to their exotic structural and optical properties. The abundance of starting monomers with variable linkage motifs may give rise to multiple conformations in either 2D or 3D fashion. Tailoring of the abovementioned properties has facilitated the application of COFs in a wide range of applications, which are strongly correlated with energy conversion schemes.

View Article and Find Full Text PDF

Theoretical insights into fluorescent properties and ESIPT behavior of novel flavone-based fluorophore and its thiol and thione derivatives.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China. Electronic address:

For the typical ESIPT process, the proton transfer process is often completed via the intramolecular hydrogen bond (IHB) with oxygen or nitrogen as proton donor or proton acceptor. In recent years, the ESIPT process for sulfur-containing hydrogen bonds has received more and more attention, but it has been rarely reported. We systematically studied the ESIPT processes and photophysical properties of 2-(benzothiophene-2-yl)-3-hydroxy-4H-chromen-4-one (BTOH), 2-(benzothiophene-2-yl)-3-mercapto-4H-chromen-4-one (BTSH) and 2-(benzothiophen-2-yl)-3-hydroxy-4H-chromene-4-thione (BTS) at the HISSbPBE/6-31+G(d,p) and TD-HISSbPBE/6-31+G(d,p) computational level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!