Hemorrhagic shock, as an important clinical issue, is regarding as a critical disease with a high mortality rate. Unfortunately, existing clinical technologies are inaccessible to assess the hemorrhagic shock via hemodynamics in microcirculation. Here, we propose an ultracompact photoacoustic microscope to assess hemorrhagic shock using a rat model and demonstrate its clinical feasibility by visualizing buccal microcirculation of healthy volunteers. Both functional and morphological features of the microvascular network including concentration of total hemoglobin (C ), number of blood vessels (VN), small vascular density (SVD) and vascular diameter (VD) were derived to assess the microvascular hemodynamics of different organs. Animal studies show the feasibility of the proposed tool to assess and stage the hemorrhagic shock via microcirculation. in vivo oral imaging of healthy volunteers indicates the translational possibility of this technique for clinical evaluation of hemorrhagic shock.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbio.201800348 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!