Despite the efforts focused on manufacturing biological engineering scaffolds for tissue engineering and regenerative medicine, a biomaterial that meets the necessary characteristics for these applications has not been developed to date. Bacterial nanocellulose (BNC) is an outstanding biomaterial for tissue engineering and regenerative medicine; however, BNC's applications have been focused on two-dimensional (2D) medical devices, such as wound dressings. Given the need for three-dimensional (3D) porous biomaterials, this work evaluates two methods to generate (3D) BNC scaffolds. The structural characteristics and physicochemical, mechanical, and cell behaviour properties were evaluated. Likewise, the effects of the pore size and surface area in the mechanical performance of BNC biomaterials and their cell response in a fibroblast cell line are discussed for the first time. In this study, a new method is proposed for the development of 3D BNC scaffolds using paraffin wax. This new method is less time-consuming, more robust in removing the paraffin and less aggressive toward the BNC microstructure. Moreover, the biomaterial had regular porosity with good mechanical behaviour; the cells can adhere and increase in number without overcrowding. Regarding the pore size and surface area, highly interconnected porosities (measuring approximately 60 μm) and high surface area are advantageous for the biomaterial's mechanical properties and cell behaviour. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 348-359, 2019.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.36532 | DOI Listing |
Food Chem
December 2024
College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China. Electronic address:
The effects of dairy sterilization techniques (65 °C/30 min, 72 °C/15 s, 85 °C/15 s, 100 °C/5 min, and 121 °C/5 s) on the epigallocatechin-3-gallate-casein (EGCG-CS) complexes were investigated through the structural and functional characteristics in this work. Fourier transform infrared spectroscopy (FT-IR) detection showed the redshirting of the absorption peak suggested structural changes in the amide I area. Field emission scanning electron microscopy (FESEM) and viscosity measurements proved that treatments above 85 °C broke non-covalent bonds, leading to instability and low viscosity of EGCG-CS.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Institute of Chemistry, Federal University of Mato Grosso do Sul, Avenida Senador Filinto Muller 1555, Campo Grande, Mato Grosso do Sul 79074-460, Brazil.
There has been huge interest among chemical scientists in the electrochemical reduction of nitrate (NO) to ammonia (NH) due to the useful application of NH in nitrogen fertilizers and fuel. To conduct such a complex reduction reaction, which involves eight electrons and eight protons, one needs to develop high-performance (and stable) electrocatalysts that favor the formation of reaction intermediates that are selective toward ammonia production. In the present study, we developed and applied CoO/graphene nanoribbon (GNR) electrocatalysts with excellent properties for the effective reduction of NO to NH, where NH yield rate of 42.
View Article and Find Full Text PDFInorg Chem
December 2024
Textile Pollution Controlling Engineering Center of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
Carbon capture and storage (CCS) from dilute sources is an important strategy for stabilizing the concentration of atmospheric carbon dioxide and global temperature. However, the adsorption process is extremely challenging due to the sluggish diffusion rate of dilute CO. Herein, -phthalic acid (PTA)-derived hierarchical porous activated carbon (PTA-C) with abundant micro- and mesopores was successfully prepared for dilute CO (2 vol %) capture at ambient conditions.
View Article and Find Full Text PDFMed Phys
December 2024
Department of Echocardiography, Ultrasound Diagnostic Center, The First Hospital of Jilin University, Changchun, China.
Background: Dialysis Access (DA) stenosis impacts hemodialysis efficiency and patient health, necessitating exams for early lesion detection. Ultrasound is widely used due to its non-invasive, cost-effective nature. Assessing all patients in large hemodialysis facilities strains resources and relies on operator expertise.
View Article and Find Full Text PDFJ Bone Joint Surg Am
December 2024
Pediatric Orthopaedic Unit, Pediatric Surgery Service, Geneva University Hospitals, Geneva, Switzerland.
Background: Transphyseal hematogenous osteomyelitis (THO) is a common infectious condition, being present in 25% of patients with hematogenous osteomyelitis. A large proportion of pediatric hematogenous osteomyelitis infections can spread through the growth cartilage and therefore may be potentially responsible for growth disorders, leading to limb-length discrepancy or angular deformities. The purpose of the present study was to identify both the prevalence of complications caused by transphyseal osteomyelitis and factors influencing their occurrence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!