Scale-invariant timing has been observed in a wide range of behavioral experiments. The firing properties of recently described time cells provide a possible neural substrate for scale-invariant behavior. Earlier neural circuit models do not produce scale-invariant neural sequences. In this article, we present a biologically detailed network model based on an earlier mathematical algorithm. The simulations incorporate exponentially decaying persistent firing maintained by the calcium-activated nonspecific (CAN) cationic current and a network structure given by the inverse Laplace transform to generate time cells with scale-invariant firing rates. This model provides the first biologically detailed neural circuit for generating scale-invariant time cells. The circuit that implements the inverse Laplace transform merely consists of off-center/on-surround receptive fields. Critically, rescaling temporal sequences can be accomplished simply via cortical gain control (changing the slope of the f-I curve).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001882 | PMC |
http://dx.doi.org/10.1002/hipo.22994 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!