Quantification of sleep is important for the diagnosis of sleep disorders and sleep research. However, the only widely accepted method to obtain sleep staging is by visual analysis of polysomnography (PSG), which is expensive and time consuming. Here, we investigate automated sleep scoring based on a low-cost, mobile electroencephalogram (EEG) platform consisting of a lightweight EEG amplifier combined with flex-printed cEEGrid electrodes placed around the ear, which can be implemented as a fully self-applicable sleep system. However, cEEGrid signals have different amplitude characteristics to normal scalp PSG signals, which might be challenging for visual scoring. Therefore, this study evaluates the potential of automatic scoring of cEEGrid signals using a machine learning classifier ("random forests") and compares its performance with manual scoring of standard PSG. In addition, the automatic scoring of cEEGrid signals is compared with manual annotation of the cEEGrid recording and with simultaneous actigraphy. Acceptable recordings were obtained in 15 healthy volunteers (aged 35 ± 14.3 years) during an extended nocturnal sleep opportunity, which induced disrupted sleep with a large inter-individual variation in sleep parameters. The results demonstrate that machine-learning-based scoring of around-the-ear EEG outperforms actigraphy with respect to sleep onset and total sleep time assessments. The automated scoring outperforms human scoring of cEEGrid by standard criteria. The accuracy of machine-learning-based automated scoring of cEEGrid sleep recordings compared with manual scoring of standard PSG was satisfactory. The findings show that cEEGrid recordings combined with machine-learning-based scoring holds promise for large-scale sleep studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446944PMC
http://dx.doi.org/10.1111/jsr.12786DOI Listing

Publication Analysis

Top Keywords

scoring ceegrid
16
sleep
13
scoring
12
manual scoring
12
ceegrid signals
12
ceegrid
8
automatic scoring
8
scoring standard
8
standard psg
8
compared manual
8

Similar Publications

A comfortable, discrete and robust recording of the sleep EEG signal at home is a desirable goal but has been difficult to achieve. We investigate how well flex-printed electrodes are suitable for sleep monitoring tasks in a smartphone-based home environment. The cEEGrid ear-EEG sensor has already been tested in the laboratory for measuring night sleep.

View Article and Find Full Text PDF

Electroencephalography (EEG) recordings represent a vital component of the assessment of sleep physiology, but the methodology presently used is costly, intrusive to participants, and laborious in application. There is a recognized need to develop more easily applicable yet reliable EEG systems that allow unobtrusive long-term recording of sleep-wake EEG ideally away from the laboratory setting. cEEGrid is a recently developed flex-printed around-the-ear electrode array, which holds great potential for sleep-wake monitoring research.

View Article and Find Full Text PDF

Quantification of sleep is important for the diagnosis of sleep disorders and sleep research. However, the only widely accepted method to obtain sleep staging is by visual analysis of polysomnography (PSG), which is expensive and time consuming. Here, we investigate automated sleep scoring based on a low-cost, mobile electroencephalogram (EEG) platform consisting of a lightweight EEG amplifier combined with flex-printed cEEGrid electrodes placed around the ear, which can be implemented as a fully self-applicable sleep system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!