Carbamoyl phosphate synthetase I (CPS1) represents an important regulatory enzyme of the urea cycle that mediates the ATP-driven reaction ligating ammonium, carbonate, and phosphate to form carbamoyl phosphate. The freeze-tolerant wood frog (Rana sylvatica or Lithobates sylvaticus) accumulates high concentrations of urea during bouts of freezing to detoxify any ammonia generated and to contribute as a cryoprotectant thereby helping to avoid freeze damage to cells. Purification of CPS1 to homogeneity from wood frog liver was performed in control and frozen wood frogs by a three-step chromatographic process. The affinity of CPS1 for its three substrates was tested in the purified control and freeze-exposed enzyme under a variety of conditions including the presence and absence of the natural cryoprotectants urea and glucose. The results demonstrated that affinity for ammonium was higher in the freeze-exposed CPS1 (1.26-fold) and that with the addition of 400 mM glucose it displayed higher affinity for ATP (1.30-fold) and the obligate activator N-acetylglutamate (1.24-fold). Denaturation studies demonstrated the freeze-exposed enzyme was less thermally stable than the control with an unfolding temperature approximately 1.5 °C lower (52.9 °C for frozen and 54.4 °C for control). The control form of CPS1 had a significantly higher degree of glutarylated lysine residues (1.42-fold increase) relative to the frozen. The results suggest that CPS1 activation and maintenance of urea cycle activity despite the hypometabolic conditions associated with freezing are important aspects in the metabolic survival strategies of the wood frog.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-018-3468-8 | DOI Listing |
Cell Biochem Funct
December 2024
Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, Ontario, Canada.
The wood frog (Rana sylvatica) endures whole-body freezing over the winter, with extensive extracellular ice formation and halted physiological activities. Epigenetic mechanisms, including reversible histone lysine methylation, enable quick alterations in gene expression, helping to maintain viability during freeze-thaw cycles. The present study evaluated eight histone lysine methyltransferases (KMTs), 10 histone lysine demethylases (KDMs), and 11 histone marks in wood frog kidneys.
View Article and Find Full Text PDFJ Anim Ecol
November 2024
Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
Animal waste can contribute substantially to nutrient cycling and ecosystem productivity in many environments. However, little is known of the biogeochemical impact of animal excretion in wetland habitats. Here we investigate the effects of wood frog (Lithobates sylvaticus) tadpole aggregations on nutrient recycling, microbial metabolism and carbon cycling in geographically isolated wetlands.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Small Molecule CMC Development, Research and Development, AbbVie Inc., North Chicago, IL 60064, United States.
Amorphous solid dispersions (ASDs) are widely employed as a strategy to improve oral bioavailability of poorly water soluble compounds. Typically, optimal dissolution performance from a polyvinylpyrrolidone vinyl acetate (PVPVA) based ASD is observed at relatively low drug loading limit. Above a certain drug load, termed limit of congruency (LoC), the release from ASDs significantly decreases.
View Article and Find Full Text PDFViruses
September 2024
Department of Biology, Trent University, 1600 West Bank Dr., Peterborough, ON K9J 7B8, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!