Isoprenoids are a highly diverse group of natural products with broad application as high value chemicals and advanced biofuels. They are synthesized using two primary building blocks, namely, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) that are generated via the mevalonate (MVA) or deoxy-D-xylulose-5-phosphate (DXP) pathways. Isoprenoid biosynthetic pathways are prevalent in eukaryotes, archaea, and bacteria. Measurement of isoprenoid intermediates via standard liquid chromatography-mass spectrometry (LC-MS) protocols is generally challenging because of the hydrophilicity and complex physicochemical properties of the molecules. In addition, there is currently no reliable analytical method that can simultaneously measure metabolic intermediates from MVA and DXP pathways, including the prenyl diphosphates. Therefore, we describe a robust hydrophilic interaction liquid chromatography time-of-flight mass spectrometry (HILIC-TOF-MS) method for analyzing isoprenoid intermediates from metabolically engineered Escherichia coli strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-8757-3_11 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!