Modification of protein-based drug carriers with tumor-targeting properties is an important area of research in the field of anticancer drug delivery. To this end, we developed nanoparticles comprised of elastin-like polypeptides (ELPs) with fused poly-aspartic acid chains (ELP-D) displaying DNA aptamers. DNA aptamers were enzymatically conjugated to the surface of the nanoparticles via genetic incorporation of Gene A* protein into the sequence of the ELP-D fusion protein. Gene A* protein, derived from bacteriophage ϕX174, can form covalent complexes with single-stranded DNA via the latter's recognition sequence. Gene A* protein-displaying nanoparticles exhibited the ability to deliver the anticancer drug paclitaxel (PTX), whilst retaining activity of the conjugated Gene A* protein. PTX-loaded protein nanoparticles displaying DNA aptamers known to bind to the MUC1 tumor marker resulted in increased cytotoxicity with MCF-7 breast cancer cells compared to PTX-loaded protein nanoparticles without the DNA aptamer modification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-018-4467-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!