This investigation assessed the biomechanical performance of the metal plate and bone strut technique for fixing recalcitrant nonunions of femur midshaft segmental defects, which has not been systematically done before. A finite element (FE) model was developed and then validated by experiments with the femur in 15 deg of adduction at a subclinical hip force of 1 kN. Then, FE analysis was done with the femur in 15 deg of adduction at a hip force of 3 kN representing about 4 x body weight for a 75 kg person to examine clinically relevant cases, such as an intact femur plus 8 different combinations of a lateral metal plate of fixed length, a medial bone strut of varying length, and varying numbers and locations of screws to secure the plate and strut around a midshaft defect. Using the traditional "high stiffness" femur-implant construct criterion, the repair technique using both a lateral plate and a medial strut fixed with the maximum possible number of screws would be the most desirable since it had the highest stiffness (1948 N/mm); moreover, this produced a peak femur cortical Von Mises stress (92 MPa) which was below the ultimate tensile strength of cortical bone. Conversely, using the more modern "low stiffness" femur-implant construct criterion, the repair technique using only a lateral plate but no medial strut provided the lowest stiffness (606 N/mm), which could potentially permit more in-line interfragmentary motion (i.e., perpendicular to the fracture gap, but in the direction of the femur shaft long axis) to enhance callus formation for secondary-type fracture healing; however, this also generated a peak femur cortical Von Mises stress (171 MPa) which was above the ultimate tensile strength of cortical bone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211160PMC
http://dx.doi.org/10.1155/2018/4650308DOI Listing

Publication Analysis

Top Keywords

metal plate
12
bone strut
12
plate bone
8
femur
8
femur midshaft
8
midshaft segmental
8
femur deg
8
deg adduction
8
hip force
8
stiffness" femur-implant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!