Pneumonia is a world health problem and a leading cause of death, particularly affecting children and the elderly (1, 2). Bacterial pneumonia following infection with influenza A virus (IAV) is associated with increased morbidity and mortality but the mechanisms behind this phenomenon are not yet well-defined (3). Host resistance and tolerance are two processes essential for host survival during infection. Resistance is the host's ability to clear a pathogen while tolerance is the host's ability to overcome the impact of the pathogen as well as the host response to infection (4-8). Some studies have shown that IAV infection suppresses the immune response, leading to overwhelming bacterial loads (9-13). Other studies have shown that some IAV/bacterial coinfections cause alterations in tolerance mechanisms such as tissue resilience (14-16). In a recent analysis of nasopharyngeal swabs from patients hospitalized during the 2013-2014 influenza season, we have found that a significant proportion of IAV-infected patients were also colonized with , a gram-negative bacteria known to be an opportunistic pathogen in a variety of diseases (17). Mice that were infected with following IAV infection demonstrated decreased survival and significant weight loss when compared to mice infected with either single pathogen. Using this model, we found that IAV/ coinfection of the lung is characterized by an exaggerated inflammatory immune response. We observed early inflammatory cytokine and chemokine production, which in turn resulted in massive infiltration of neutrophils and inflammatory monocytes. Despite this swift response, the pulmonary pathogen burden in coinfected mice was similar to singly-infected animals, albeit with a slight delay in bacterial clearance. In addition, during coinfection we observed a shift in pulmonary macrophages toward an inflammatory and away from a tissue reparative phenotype. Interestingly, there was only a small increase in tissue damage in coinfected lungs as compared to either single infection. Our results indicate that during pulmonary coinfection a combination of seemingly modest defects in both host resistance and tolerance may act synergistically to cause worsened outcomes for the host. Given the prevalence of detected in human IAV patients, these dysfunctional tolerance and resistance mechanisms may play an important role in the response of patients to IAV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6217722PMC
http://dx.doi.org/10.3389/fimmu.2018.02377DOI Listing

Publication Analysis

Top Keywords

host resistance
12
resistance tolerance
12
influenza virus
8
host's ability
8
iav infection
8
immune response
8
mice infected
8
host
6
tolerance
6
infection
6

Similar Publications

Biotic stresses such as fungal pathogens significantly affect global crop yields. Understanding of the plant-pathogen interactions during root infection, especially in monocot crops, remains limited compared to fungal colonizations of dicots. The infection process of several cereal crop root-damaging fungi and oomycetes is highly similar to root infections by the pathogen model Phytophthora palmivora.

View Article and Find Full Text PDF

The detached leaf assay is a valuable method for studying plant-pathogen interactions, enabling the assessment of pathogenicity, plant resistance, and treatment effects. In this protocol, we outline how to set up a Phytophthora detached leaf assay and use non-expert machine learning tools to increase the reliability and throughput of the image analysis. Utilizing ilastik for pixel classification and Python scripts for segmentation, manual correction, and temporal linking, the pipeline provides objective and quantitative data over time.

View Article and Find Full Text PDF

: The rise of drug-resistant strains presents a significant challenge in the treatment of Leishmaniasis, a neglected tropical disease. Extracellular vesicles (EVs) produced by these parasites have gained attention for their role in drug resistance and host-pathogen interactions. : This study developed and applied a novel lipidomics workflow to explore the lipid profiles of EVs from three types of drug-resistant strains compared to a wild-type strain.

View Article and Find Full Text PDF

Advancing Phage Therapy: A Comprehensive Review of the Safety, Efficacy, and Future Prospects for the Targeted Treatment of Bacterial Infections.

Infect Dis Rep

November 2024

Drug Discovery and Development, Creative Biolabs Inc., Shirley, NY 11967, USA.

Background: Phage therapy, a treatment utilizing bacteriophages to combat bacterial infections, is gaining attention as a promising alternative to antibiotics, particularly for managing antibiotic-resistant bacteria. This study aims to provide a comprehensive review of phage therapy by examining its safety, efficacy, influencing factors, future prospects, and regulatory considerations. The study also seeks to identify strategies for optimizing its application and to propose a systematic framework for its clinical implementation.

View Article and Find Full Text PDF

The bacterium responsible for Lyme disease, , accumulates high levels of manganese without iron and possesses a polyploid genome, characteristics suggesting potential extreme resistance to radiation. Contrary to expectations, we report that wild-type B31 cells are radiosensitive, with a gamma-radiation survival limit for 10 wild-type cells of <1 kGy. Thus, we explored radiosensitivity through electron paramagnetic resonance (EPR) spectroscopy by quantitating the fraction of Mn present as antioxidant Mn metabolite complexes (H-Mn).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!