When infected, animals change their behaviors in several ways, including by decreasing their activity, their food and water intake, and their interest in social interactions. These behavioral alterations are collectively called sickness behaviors and, for several decades, the main hypotheses put forward to explain this phenomenon were that engaging in sickness behaviors facilitated the fever response and improved the likelihood of host survival. However, a new hypothesis was recently proposed suggesting that engaging in sickness behaviors may serve to protect kin. We tested this kin protection hypothesis by combining a field and a laboratory experiment in house mice. In both experiments, we induced sickness behaviors by administration of a pro-inflammatory agent. In the field experiment, we then collected genetic data and assessed whether relatedness affected the intensity of sickness behaviors. In the lab experiment, we manipulated relatedness in small social groups and assessed whether having a closely related individual (a sibling) in the group altered social interactions or visits to common resources (such as food and water containers) once immune-challenged. Our results do not support the kinship protection hypothesis and therefore advance our understanding of why such an apparently costly set of behavioral changes would be evolutionarily maintained.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232183 | PMC |
http://dx.doi.org/10.1038/s41598-018-35174-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!