Pervasive deformation twinning in magnesium greatly affects its strength and formability. The local stress fields associated with twinning play a key role on deformation behavior and fracture but are extremely difficult to characterize experimentally. In this study, we perform synchrotron experiments with differential-aperture X-ray microscopy to measure the 3D stress fields in the vicinity of a twin with a spatial resolution of 0.5 micrometer. The measured local stress field aids to identify the sequence of events involved with twinning. We find that the selected grain deforms elastically before twinning, and the twin formation splits the grain into two non-interacting domains. Under further straining one domain of the grain continued to deform elastically, whereas the other domain deforms plastically by prismatic slip. This heterogeneous deformation behavior may be mediated by the surrounding medium and it is likely to lead to asymmetric twin growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6232174 | PMC |
http://dx.doi.org/10.1038/s41467-018-07028-w | DOI Listing |
Eur J Med Genet
January 2025
Genetics Institute, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, The Technion, Haifa, Israel. Electronic address:
Background: Ulnar mammary syndrome (UMS) is an autosomal dominant disorder caused by heterozygous pathogenic variants in the T-box transcription factor 3 (TBX3) gene. The phenotype is classically characterized by upper limb defects and apocrine/mammary gland hypoplasia. Endocrine abnormalities include hypogonadotropic hypogonadism (HH), partial growth hormone deficiency and dysmorphic features, while ectopic pituitary gland and various congenital anomalies have also been described.
View Article and Find Full Text PDFBackground: Alzheimer's Disease (AD) and traumatic brain injuries (TBI) are frequently associated in medical literature, with a significant prevalence of TBI history observed among individuals diagnosed with AD. Our investigation focuses on this intersection, explicitly examining the risk of AD in individuals with a history of TBI. While current targets in cerebrospinal fluid and plasma can effectively detect acute TBI, the challenge lies in identifying biosignatures associated with TBI long after injury.
View Article and Find Full Text PDFBackground: Amyloid, Tau and neurodegeneration (ATN), the hallmark pathologies of Alzheimer's Disease (AD) translating to measurable biomarkers are important for disease modifying therapeutics.
Method: AD Digital-Twins were built using AITIA's patented A.I.
Materials (Basel)
December 2024
School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
In this paper, in order to investigate the harmonious relationship between the compression deformation behavior of metastable β titanium alloy and the microstructure evolution, the β solution-treated Ti-10V-2Fe-3Al (Ti-1023) alloy was compressed at room temperature and its deformation behavior was analyzed. Optical microscopy (OM) and field emission electron microscopy (FESEM) were used to study the microstructure evolution of alloys at different strain rates. The results show that the stress-induced martensite transformation (SIMT) is more easily activated by low strain rate compression deformation, which is conducive to improving its comprehensive mechanical properties.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Korea National Institute of Rare Metals, Korea Institute of Industrial Technology, Incheon 21655, Republic of Korea.
Titanium (Ti) and its alloys are used in various applications, including aircraft frames, ship parts, heat exchangers, and evaporator tubes, because of their extraordinary properties, such as high specific strength, excellent corrosion resistance at high temperatures, good castability, and weldability. Plastic deformation plays a crucial role in securing the appropriate microstructure and strength of Ti and alloys in these applications. The rolling process, one of the most useful methods for plastic deformation, causes efficient deformation inside the materials, resulting in grain refinement, dislocation slip, and twinning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!