Straightening of the body axis is a major morphogenetic event that produces the typical head-to-tail shape of the vertebrate embryo. Defects in axial straightening can lead to debilitating disorders such as idiopathic scoliosis, characterized by three-dimensional curvatures of the spine. Although abnormal cerebrospinal fluid (CSF) flow has been implicated in the development of idiopathic scoliosis, the molecular mechanisms operating downstream of CSF flow remain obscure. Here we show that, in zebrafish embryos, cilia-driven CSF flow transports adrenergic signals that induce urotensin neuropeptides in CSF-contacting neurons along the spinal cord. Urotensins activate their receptor on slow-twitch muscle fibers of the dorsal somite; the contraction of these fibers likely results in straightening of the body axis. Consistent with this, mutation of the urotensin receptor resulted in severe scoliosis in adult zebrafish, closely mimicking the human disorder. These findings suggest that disruption of urotensin signaling by impaired CSF flow could be a critical etiological factor underlying the pathology of idiopathic scoliosis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0260-3DOI Listing

Publication Analysis

Top Keywords

csf flow
16
body axis
12
idiopathic scoliosis
12
cerebrospinal fluid
8
urotensin neuropeptides
8
straightening body
8
flow
5
cilia-driven cerebrospinal
4
fluid flow
4
flow directs
4

Similar Publications

Background/objectives: Cerebrospinal infusion studies indicate that cerebrospinal fluid outflow resistance (R) is elevated in normal pressure hydrocephalus (NPH). These studies assume that the cerebrospinal formation rate (CSF) does not vary during the infusion. If the CSF were to increase during the infusion then the R would be overestimated.

View Article and Find Full Text PDF

Recent studies have reported that monitoring spinal cord perfusion pressure (SCPP) using a pressure probe to measure "intraspinal pressure" (ISP) within the subdural space at the injury site may improve the hemodynamic management of acute spinal cord injury (SCI) patients. This study aimed to investigate, within a pig model of SCI, the relationship between the ISP measured within the subdural space and the "spinal cord pressure" (SCP) measured within the spinal cord itself. Specifically, we sought to characterize the changes to ISP and SCP over time, both rostral and caudal to the injury epicenter, and in relation to native spinal cord morphometry.

View Article and Find Full Text PDF

Background: The pressure gradient between the ventricles and the subarachnoid space (transmantle pressure) is crucial for understanding CSF circulation and the pathogenesis of certain neurodegenerative diseases. This pressure can be approximated by the pressure difference across the aqueduct (ΔP). Currently, no dedicated platform exists for quantifying ΔP, and no research has been conducted on the impact of breathing on ΔP.

View Article and Find Full Text PDF

Cardiorespiratory signals have long been treated as "noise" in functional magnetic resonance imaging (fMRI) research, with the goal of minimizing their impact to isolate neural activity. However, there is a growing recognition that these signals, once seen as confounding variables, provide valuable insights into brain function and overall health. This shift reflects the dynamic interaction between the cardiovascular, respiratory, and neural systems, which together support brain activity.

View Article and Find Full Text PDF

While the latest WHO classification of hematological neoplasms helps refine the diagnostic criteria for anaplastic large cell lymphomas (ALCL), their diagnosis can still be challenging. This retrospective series of 10 ALCL cases illustrates the cytological appearance and immunological profile obtained through flow cytometry (FCM) from various sample types, including lymph node biopsies (LN), peripheral blood (PB), cerebrospinal fluid (CSF), and pleural fluid (PF). ALCL exhibits a polymorphic cytological appearance, ranging from "doughnut" cells to Hodgkin-like cells, very large cells, and small cells, with this polymorphism being particularly pronounced in ALK (-) forms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!