The monoamine neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) exerts an inhibitory influence over motivation, but the circuits mediating this are unknown. Here, we used an optogenetic approach to isolate the contribution of dorsal raphe nucleus (DRN) 5-HT neurons and 5-HT innervation of the mesolimbic dopamine (DA) system to motivated behavior in mice. We found that optogenetic stimulation of DRN 5-HT neurons enhanced downstream 5-HT release, but this was not sufficient to inhibit operant responding for saccharin, a measure of motivated behavior. However, combining optogenetic stimulation of DRN 5-HT neurons with a low dose of the selective serotonin reuptake inhibitor (SSRI) citalopram synergistically reduced operant responding. We then examined whether these effects could be recapitulated if optogenetic stimulation specifically targeted 5-HT terminals in the ventral tegmental area (VTA) or nucleus accumbens (NAc) of the mesolimbic DA system. Optogenetic stimulation of 5-HT input to the VTA combined with citalopram treatment produced a synergistic decrease in responding for saccharin, resembling the changes produced by targeting 5-HT neurons in the DRN. However, this effect was not observed when optogenetic stimulation targeted 5-HT terminals in the NAc. Taken together, these results suggest that DRN 5-HT neurons exert an inhibitory influence over operant responding for reward through a direct interaction with the mesolimbic DA system at the level of the VTA. These studies support an oppositional interaction between 5-HT and DA systems in controlling motivation and goal-directed behavior, and have important implications for the development and refinement of treatment strategies for psychiatric disorders such as depression and addiction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372654PMC
http://dx.doi.org/10.1038/s41386-018-0271-xDOI Listing

Publication Analysis

Top Keywords

optogenetic stimulation
24
5-ht neurons
20
operant responding
16
drn 5-ht
16
5-ht
12
dorsal raphe
8
inhibit operant
8
responding reward
8
ventral tegmental
8
tegmental area
8

Similar Publications

Animals alter their behavior in response to changes in the environment. Upon encountering hyperosmotic conditions, the nematode worm initiates avoidance and cessation of egg-laying behavior. While the sensory pathway for osmotic avoidance is well-understood, less is known about how egg laying is inhibited.

View Article and Find Full Text PDF

Cell-type-specific activation of parvalbumin (PV)-expressing neurons in the external globus pallidus (GPe) through optogenetics has shown promise in facilitating long-lasting movement dysfunction recovery in mice with Parkinson's disease. However, its translational potential is hindered by adverse effects stemming from the invasive implantation of optical fibers into the brain. In this study, we have developed a non-invasive optogenetics approach, utilizing focused ultrasound-triggered mechanoluminescent nanotransducers to enable remote photon delivery deep in the brain for genetically targeted neuromodulation.

View Article and Find Full Text PDF

The bed nucleus of the stria terminalis (BNST) is involved in feeding, reward, aversion, and anxiety-like behavior. We identify BNST neurons defined by the expression of vesicular glutamate transporter 3, VGluT3. VGluT3 neurons were localized to anteromedial BNST, were molecularly distinct from accumbal VGluT3 neurons, and co-express vesicular GABA transporter (VGaT).

View Article and Find Full Text PDF

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

Dendrites are crucial for receiving information into neurons. Sensory experience affects the structure of these tree-like neurites, which, it is assumed, modifies neuronal function, yet the evidence is scarce, and the mechanisms are unknown. To study whether sensory experience affects dendritic morphology, we use the arborized nociceptor PVD neurons, under natural mechanical stimulation induced by physical contacts between individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!