Background: Patient information in rare disease registries is generally collected from numerous data sources, necessitating the data to be federated. In addition, data for research purposes must be de-identified. Transforming nominative data into de-identified data is thus a key issue, while minimizing the number of identity duplicates. We propose a method enabling patient identity federation and rare disease data de-identification while preserving the pertinence of the provided data.
Results: We developed a rare disease patient identifier. The IdMR generation process is a three-phased algorithm involving a hash function to irreversibly de-identify nominative patient data, including those of foetuses. This process minimizes collision risks and reduces variability for the purpose of identity federation. The IdMR was generated for 360,000 patients of the CEMARA database. It allowed identity federation of 1771 duplicated files. No collisions were introduced.
Conclusion: We examined and discussed the risks of collisions and the creation of duplicates as well as the risks of patient re-identification. We discussed our choice of nominative input information in light of that used by other patient identification solutions. The IdMR is a patient identifier that enables identity federation and file linkage. The simplicity of the algorithm and the universality and stability of the input data make it a good candidate for European cross-border rare disease projects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233538 | PMC |
http://dx.doi.org/10.1186/s13023-018-0948-6 | DOI Listing |
J Neurol
January 2025
Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
Objective: This study aims to evaluate our experience in the diagnosis of hereditary ataxias (HAs), to analyze data from a real-world scenario.
Study Design: This is a retrospective, cross-sectional, descriptive study conducted at a single Italian adult neurogenetic outpatient clinic, in 147 patients affected by ataxia with a suspicion of hereditary forms, recruited from November 1999 to February 2024. A stepwise approach for molecular diagnostics was applied: targeted gene panel (TP) next-generation sequencing (NGS) and/or clinical exome sequencing (CES) were performed in the case of inconclusive first-line genetic testing, such as short tandem repeat expansions (TREs) testing for most common spinocerebellar ataxias (SCA1-3, 6-8,12,17, DRPLA), other forms [Fragile X-associated tremor/ataxia syndrome (FXTAS), Friedreich ataxia (FRDA) and mitochondrial DNA-related ataxia, RFC1-related ataxia/CANVAS] or inconclusive phenotype-guided specific single gene sequencing.
J Neurol
January 2025
Department of Neurology and Neurosciences, Donostia University Hospital, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain.
Background: Alpha-actinin-2, a protein with high expression in cardiac and skeletal muscle, is located in the Z-disc and plays a key role in sarcomere stability. Mutations in ACTN2 have been associated with both hypertrophic and dilated cardiomyopathy and, more recently, with skeletal myopathy.
Methods: Genetic, clinical, and muscle imaging data were collected from 37 patients with an autosomal dominant ACTN2 myopathy belonging to 11 families from Spain and Belgium.
J Neurol
January 2025
Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
Background: Anti-IgLON5 disease is a rare autoimmune neurological disorder with prominent Tau protein deposits in the brainstem and hypothalamus. The aim of this study was to visualize the in vivo distribution patterns of Tau protein in patients with anti-IgLON5 disease using the second-generation Tau PET tracer, Florzolotau (18F) PET imaging.
Methods: Patients diagnosed with anti-IgLON5 disease were enrolled consecutively.
J Neurol
January 2025
Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
Ataxia-Telangiectasia (A-T) is a very rare multisystem disease of DNA repair, associated with progressive disabling neurological symptoms, respiratory failure, immunodeficiency and cancer predisposition, leading to premature death. There are no curative treatments available for A-T but clinical trials have begun. A major limiting factor in effectively evaluating therapies for A-T is the lack of suitable outcome measures and biomarkers.
View Article and Find Full Text PDFNeurogenetics
January 2025
Department of Neuroscience and Behavioural Sciences, School of Medicine at Ribeirão Preto, University of São Paulo, Bandeirantes Av. 3900, Ribeirão Preto, São Paulo, 14040-900, Brazil.
Neuronal Ceroid Lipofuscinosis 11 (CLN11) is an ultra-rare subtype of adult-onset Neuronal Ceroid Lipofuscinosis. Its phenotype is variable and not fully known. A 21-year-old man was evaluated in our neurogenetic outpatient clinic for early onset complex phenotype, including learning difficulties, cerebellar ataxia, cone-rod dystrophy, epilepsy, and dystonia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!