Background: This study aims to establish a radiomics analysis system for the diagnosis and clinical behaviour prediction of hepatocellular carcinoma (HCC) based on multi-parametric ultrasound imaging.

Methods: A total of 177 patients with focal liver lesions (FLLs) were included in the study. Every patient underwent multi-modal ultrasound examination, including B-mode ultrasound (BMUS), shear wave elastography (SWE), and shear wave viscosity (SWV) imaging. The radiomics analysis system was built on sparse representation theory (SRT) and support vector machine (SVM) for asymmetric data. Through the sparse regulation from the SRT, the proposed radiomics system can effectively avoid over-fitting issues that occur in regular radiomics analysis. The purpose of the proposed system includes differential diagnosis between benign and malignant FLLs, pathologic diagnosis of HCC, and clinical prognostic prediction. Three biomarkers, including programmed cell death protein 1 (PD-1), antigen Ki-67 (Ki-67) and microvascular invasion (MVI), were included and analysed. We calculated the accuracy (ACC), sensitivity (SENS), specificity (SPEC) and area under the receiver operating characteristic curve (AUC) to evaluate the performance of the radiomics models.

Results: A total of 2560 features were extracted from the multi-modal ultrasound images for each patient. Five radiomics models were built, and leave-one-out cross-validation (LOOCV) was used to evaluate the models. In LOOCV, the AUC was 0.94 for benign and malignant classification (95% confidence interval [CI]: 0.88 to 0.98), 0.97 for malignant subtyping (95% CI: 0.93 to 0.99), 0.97 for PD-1 prediction (95% CI: 0.89 to 0.98), 0.94 for Ki-67 prediction (95% CI: 0.87 to 0.97), and 0.98 for MVI prediction (95% CI: 0.93 to 0.99). The performance of each model improved when the viscosity modality was included.

Conclusions: Radiomics analysis based on multi-modal ultrasound images could aid in comprehensive liver tumor evaluations, including diagnosis, differential diagnosis, and clinical prognosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233500PMC
http://dx.doi.org/10.1186/s12885-018-5003-4DOI Listing

Publication Analysis

Top Keywords

radiomics analysis
20
multi-modal ultrasound
16
ultrasound images
12
prediction 95%
12
prediction hepatocellular
8
hepatocellular carcinoma
8
radiomics
8
analysis based
8
based multi-modal
8
analysis system
8

Similar Publications

Our objective is to determine the protein and complements constituents of Cord blood Platelet-rich plasma (CB-PRP), based on the hypothesis that it contains beneficial components capable of arresting or potentially decelerating the advancement of atrophic age-related macular degeneration (dry-AMD), with the support of radiomics. Two distinct pools of CB-PRP were assessed, each pool obtained from a total of 15 umbilical cord-blood donors. One aliquot of each pool respectively was subjected to proteomic analysis in order to enhance the significance of our findings, by identifying proteins that are shared between the two sample pools and gaining insights into the pathways they are associated with.

View Article and Find Full Text PDF

To investigate the potential of an MRI-based radiomic model in distinguishing malignant prostate cancer (PCa) nodules from benign prostatic hyperplasia (BPH)-, as well as determining the incremental value of radiomic features to clinical variables, such as prostate-specific antigen (PSA) level and Prostate Imaging Reporting and Data System (PI-RADS) score. A restrospective analysis was performed on a total of 251 patients (training cohort, n = 119; internal validation cohort, n = 52; and external validation cohort, n = 80) with prostatic nodules who underwent biparametric MRI at two hospitals between January 2018 and December 2020. A total of 1130 radiomic features were extracted from each MRI sequence, including shape-based features, gray-level histogram-based features, texture features, and wavelet features.

View Article and Find Full Text PDF

Radiomics and Deep Learning Model for Benign and Malignant Soft Tissue Tumors Differentiation of Extremities and Trunk.

Acad Radiol

January 2025

Department of Radiology, Southeast University Zhongda Hospital, No. 87 Dingjiaqiao Road, Gulou District, Nanjing, Jiangsu Province, China (M.Y., J.J.). Electronic address:

Rationale And Objectives: To develop radiomics and deep learning models for differentiating malignant and benign soft tissue tumors (STTs) preoperatively based on fat saturation T2-weighted imaging (FS-T2WI) of patients.

Materials And Methods: Data of 115 patients with STTs of extremities and trunk were collected from our hospital as the training set, and data of other 70 patients were collected from another center as the external validation set. Outlined Regions of interest included the intratumor and the peritumor region extending outward by 5 mm, then the corresponding radiomics features were extracted respectively.

View Article and Find Full Text PDF

An Automatic Deep-Radiomics Framework for Prostate Cancer Diagnosis and Stratification in Patients with Serum Prostate-Specific Antigen of 4.0-10.0 ng/mL: A Multicenter Retrospective Study.

Acad Radiol

January 2025

Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China (B.Z., F.M., X.S., S.L., Q.W.); Department of Urology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong 510080, China (Q.W.). Electronic address:

Rationale And Objectives: To develop an automatic deep-radiomics framework that diagnoses and stratifies prostate cancer in patients with prostate-specific antigen (PSA) levels between 4 and 10 ng/mL.

Materials And Methods: A total of 1124 patients with histological results and PSA levels between 4 and 10 ng/mL were enrolled from one public dataset and two local institutions. An nnUNet was trained for prostate masks, and a feature extraction module identified suspicious lesion masks.

View Article and Find Full Text PDF

Ultrasound radiomics predict the success of US-guided percutaneous irrigation for shoulder calcific tendinopathy.

Jpn J Radiol

January 2025

Artificial Intelligence and Translational Imaging (ATI) Lab, Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece.

Objective: Calcific tendinopathy, predominantly affecting rotator cuff tendons, leads to significant pain and tendon degeneration. Although US-guided percutaneous irrigation (US-PICT) is an effective treatment for this condition, prediction of patient' s response and long-term outcomes remains a challenge. This study introduces a novel radiomics-based model to forecast patient outcomes, addressing a gap in the current predictive methodologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!