Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Certain avian tendons have been studied previously as a model system for normal mineralization of vertebrates in general. In this regard, the gastrocnemius tendon in the legs of turkeys mineralizes in a well defined temporal and spatial manner such that changes in the initial and subsequent events of mineral formation can be associated with time and specific locations in the tissue. In the present investigation, these parameters and mineral deposition have been correlated with the expression of several genes and the synthesis and secretion of their related extracellular matrix proteins by the composite tenocytes of the tendon. Quantitative polymerase chain reaction analysis demonstrates that mRNA expression of the non-collagenous genes of bone sialoprotein, osteopontin, and osteocalcin corresponds well with the temporal and spatial onset and progression of mineralization. Immunolocalization separately confirms the synthesis and secretion of these matrix molecules. The expression of other non-collagenous genes such as decorin does not show strong correlation with turkey leg tendon mineralization, and expression of vimentin, a cytoskeletal component which may be regulated by biomechanical factors in the tendon, may lead to inhibition of osteocalcin expression during the development and mineralization of the tissue. The overall results of this work provide insight into direct temporal and spatial relations between the genes and proteins of interest as well as the formation and deposition of mineral in the avian tendon model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2018.11.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!