Distinct phosphorylation sites/clusters in the carboxyl terminus regulate α-adrenergic receptor subcellular localization and signaling.

Cell Signal

Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70-248, Ciudad de México 04510, Mexico. Electronic address:

Published: January 2019

The human α-adrenergic receptor is a seven transmembrane-domain protein that mediates many of the physiological actions of adrenaline and noradrenaline and participates in the development of hypertension and benign prostatic hyperplasia. We recently reported that different phosphorylation patterns control α-adrenergic receptor desensitization. However, to our knowledge, there is no data regarding the role(s) of this receptor's specific phosphorylation residues in its subcellular localization and signaling. In order to address this issue, we mutated the identified phosphorylated residues located on the third intracellular loop and carboxyl tail. In this way, we experimentally confirmed α-AR phosphorylation sites and identified, in the carboxyl tail, two groups of residues in close proximity to each other, as well as two individual residues in the proximal (T442) and distal (S543) regions. Our results indicate that phosphorylation of the distal cluster (T507, S515, S516 and S518) favors α-AR localization at the plasma membrane, i. e., substitution of these residues for non-phosphorylatable amino acids results in the intracellular localization of the receptors, whereas phospho-mimetic substitution allows plasma membrane localization. Moreover, we found that T442 phosphorylation is necessary for agonist- and phorbol ester-induced receptor colocalization with β-arrestins. Additionally, we observed that substitution of intracellular loop 3 phosphorylation sites for non-phosphorylatable amino acids resulted in sustained ERK1/2 activation; additional mutations in the phosphorylated residues in the carboxyl tail did not alter this pattern. In contrast, mobilization of intracellular calcium and receptor internalization appear to be controlled by the phosphorylation of both third-intracellular-loop and carboxyl terminus-domain residues. In summary, our data indicate that a) both the phosphorylation sites present in the third intracellular loop and in the carboxyl terminus participate in triggering calcium signaling and in turning-off α-AR-induced ERK activation; b) phosphorylation of the distal cluster appears to play a role in receptor's plasma membrane localization; and c) T442 appears to play a critical role in receptor phosphorylation and receptor-β-arrestin colocalization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2018.11.003DOI Listing

Publication Analysis

Top Keywords

α-adrenergic receptor
12
intracellular loop
12
carboxyl tail
12
phosphorylation sites
12
plasma membrane
12
phosphorylation
10
carboxyl terminus
8
subcellular localization
8
localization signaling
8
phosphorylated residues
8

Similar Publications

Purpose: Orvacabtagene autoleucel (orva-cel; JCARH125), a CAR T-cell therapy targeting B-cell maturation antigen (BCMA), was evaluated in relapsed/refractory multiple myeloma (RRMM) patients in the EVOLVE phase 1/2 study (NCT03430011). We applied a modified piecewise model to characterize orva-cel transgene kinetics and assessed the impact of various covariates on its pharmacokinetics (PK).

Experimental Design: The population PK analysis included 159 patients from the EVOLVE study.

View Article and Find Full Text PDF

Factors Associated With Semaglutide Initiation Among Adults With Obesity.

JAMA Netw Open

January 2025

Department of Global Health, School of Public Health, Boston University, Boston, Massachusetts.

Importance: Semaglutide, a novel glucagon-like peptide-1 (GLP-1) receptor agonist medication, was approved for weight management in individuals with obesity in June 2021. There is limited evidence on factors associated with uptake among individuals in this subgroup without diabetes.

Objective: To explore factors associated with semaglutide initiation among a population of commercially insured individuals with obesity but no diagnosed diabetes.

View Article and Find Full Text PDF

Pyrimidinergic P2Y1-Like Nucleotide Receptors Are Functional in Rat Conjunctival Goblet Cells.

Invest Ophthalmol Vis Sci

January 2025

Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.

Purpose: To investigate the presence of uridine-5'-triphosphate (UTP)-activated P2Y1-like nucleotide receptors (P2Y2R, P2Y4R, and P2Y6R) in conjunctival goblet cells (CGCs) and determine if they increase intracellular Ca2+ concentration ([Ca2+]i) and induce mucin secretion.

Methods: Adult, male rat conjunctiva was used for culture of CGCs. To investigate the expression of P2YRs, mRNA was extracted from CGCs and used for reverse transcription PCR (RT-PCR) with commercially obtained primers specific to P2Y2R, P2Y4R, and P2Y6R.

View Article and Find Full Text PDF

Purpose Of Review: This paper reviewed the current literature on incidence, clinical manifestations, and risk factors of Chimeric Antigen Receptor T-cell (CAR-T) cardiotoxicity.

Recent Findings: CAR-T therapy has emerged as a groundbreaking treatment for hematological malignancies since FDA approval in 2017. CAR-T therapy is however associated with a few side effects, among which cardiotoxicity is of significant concern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!