A method was developed for simultaneous determination of 15 amino acids and 7 alkyl amines. The method was based on the employment of high performance liquid chromatography/fluorescence detection and online derivatization with o-phthaldiadehyde. The 22 derivatives were separated within 30 min including the equilibration time and detected by a fluorescence detector at an excitation wavelength of 230 nm and emission wavelength of 450 nm. The analysis procedure was satisfactorily validated by the reproducibility, recovery, linearity and detection limit of the analytes. The relative standard deviations (RSDs) of retention time and peak area for individual amino acids and alkyl amines were consistently less than 0.30% and 2.35%, respectively. Good recovery values ranging from 70% to 109% were obtained. The proposed method showed good linearity (R2≥0.99) in the range of 0.125-125 μM/L for amino acids and 2.5-5000 ng/L for alkyl amines. The detection limit ranged from 0.13 pM to 0.37 pM for individual amino acids and from 0.9 ng to 7.2 ng for individual alkyl amines. The developed and validated method was successfully applied to the quantitative analysis of amino acids and alkyl amines in continental and marine aerosols in China. Among the identified organic nitrogen compounds, 7 amino acids and 6 alkyl amines were detected in every aerosol sample. Glycine was the dominant amino acid, with the average of 130.93 pmol/m3 (accounting for 83% of the total amino acids) and 137.22 pmol/m3 (accounting for 66% of the total amino acids) in continental and marine aerosols in China, respectively. Methylamine and ethanolamine were the most abundant alkyl amines, contributing 87% and 64% to the total alkyl amines in continental and marine aerosols in China, respectively. This work provided an accurate, sensitive and simple method to determine simultaneously amino acids and alkyl amines, and applied the proposed method to the first investigation of amino acids in Shanghai and amino acids and alkyl amines in Huaniao Island in China. The finding of considerable amino acids and alkyl amines in continental and marine aerosols may exert significant implications on nitrogen cycling and atmospheric chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231614 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206488 | PLOS |
Mol Pharm
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States.
Although glycine is the simplest of the amino acids, its solution and solid-state properties are far from straightforward. The aqueous solubility of glycine plays an important role in various applications, including nutrition, food products, biodegradable plastics, and drug development. There is evidence that glycine in subsaturated pH 3-8 solutions forms a dimer, as suggested by several techniques.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
Mitochondrial carrier homolog 2 (MTCH2) is a regulator of apoptosis, mitochondrial dynamics, and metabolism. Loss of MTCH2 results in mitochondrial fragmentation, an increase in whole-body energy utilization, and protection against diet-induced obesity. In this study, we used temporal metabolomics on HeLa cells to show that MTCH2 deletion results in a high ATP demand, an oxidized cellular environment, and elevated utilization of lipids, amino acids, and carbohydrates, accompanied by a decrease in several metabolites.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Nakhon Pathom, 73170, Salaya, Thailand.
Purpose Of Review: The diverse polyphenolic components present in these berries are responsible for their functional properties in human health. Hence, there is an increasing demand for research in berry bioactive components to understand the mechanism of action in alleviating and preventing diseases. Therefore, in this last part-III of the review series, mulberry, raspberry, salmonberry, Saskatoonberry, and strawberry are discussed in terms of their bioactive components and corresponding substantial health benefits.
View Article and Find Full Text PDFNat Metab
January 2025
Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; School of Basic Medical Sciences, Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; Shanghai Key Laboratory of Radiation Oncology; the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China.
Nutrient availability strongly affects intestinal homeostasis. Here, we report that low-protein (LP) diets decrease amino acids levels, impair the DNA damage response (DDR), cause DNA damage and exacerbate inflammation in intestinal tissues of male mice with inflammatory bowel disease (IBD). Intriguingly, loss of nuclear fragile X mental retardation-interacting protein 1 (NUFIP1) contributes to the amino acid deficiency-induced impairment of the DDR in vivo and in vitro and induces necroptosis-related spontaneous enteritis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!