A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surfactant-assisted-water-exposed versus surfactant-aqueous-solution-exposed electrospinning of novel super hydrophilic polycaprolactone based fibers: Analysis of drug release behavior. | LitMetric

Surface hydrophilicity and scaffold integrity determine the drug release behavior of drug loaded electrospun fibrous mats. When mixture miscibility is acceptable, blend electrospinning of hydrophobic with hydrophilic polymers can improve scaffold hydrophilicity while the hydrophobic polymer maintains the mechanical strength of scaffold. Polycaprolactone (PCL) and Pluronic P123 (P123) blend electrospinning has been investigated. In routine blend electrospinning, surface enrichment of Pluronic sets a limit for P123 weight ratio in which exceeding from that limit causes the excess P123 to be accumulated within the electrospun fiber core. To overcome this setback, a method named surfactant assisted water exposed (SAWE) electrospinning was introduced which was proven to be effective for increasing the surface enrichment of Pluronic. In order to test the validity of this method, the electrospinning of solution containing PCL which is exposed to aqueous solution of P123 was investigated. This new method was named surfactant aqueous solution exposed (SASE) electrospinning. Myelin formation at the contact interface of aqueous solution and chloroform solution was studied and it was found that this layer can effectively barricade the migration of Pluronic chains between immiscible phases. For SASE, fiber surface coverage by P123 was uneven and loose. Electrospun scaffolds from SAWE and SASE were loaded with drug to investigate the effect of the exposure time during electrospinning on in vitro drug release. By increasing the exposure time, the abnormal two-stage phased release profile of SAWE became normal with moderate initial burst. Longer exposure time increased the initial burst of the drug loaded SASE fibers. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 597-609, 2019.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.36575DOI Listing

Publication Analysis

Top Keywords

drug release
12
blend electrospinning
12
aqueous solution
12
exposure time
12
electrospinning
8
release behavior
8
drug loaded
8
surface enrichment
8
enrichment pluronic
8
method named
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!