Introduction: Radiation-induced cognitive decline (RICD) is a late effect of radiotherapy (RT) occurring in 30-50% of irradiated brain tumor survivors. In preclinical models, pioglitazone prevents RICD but there are little safety data on its use in non-diabetic patients. We conducted a dose-escalation trial to determine the safety of pioglitazone taken during and after brain irradiation.

Methods: We enrolled patients > 18 years old with primary or metastatic brain tumors slated to receive at least 10 treatments of RT (≤ 3 Gy per fraction). We evaluated the safety of pioglitazone at 22.5 mg and 45 mg with a dose-escalation phase and dose-expansion phase. Pioglitazone was taken daily during RT and for 6 months after.

Results: 18 patients with a mean age of 54 were enrolled between 2010 and 2014. 14 patients had metastatic brain tumors and were treated with whole brain RT. Four patients had primary brain tumors and received partial brain RT and concurrent chemotherapy. No DLTs were identified. In the dose-escalation phase, there were only three instances of grade ≥ 3 toxicity: one instance of neuropathy in a patient receiving 22.5 mg, one instance of fatigue in a patient receiving 22.5 mg and one instance of dizziness in a patient receiving 45 mg. The attribution in each of these cases was considered "possible." In the dose-expansion phase, nine patients received 45 mg and there was only one grade 3 toxicity (fatigue) possibly attributable to pioglitazone.

Conclusion: Pioglitazone was well tolerated by brain tumor patients undergoing RT. 45 mg is a safe dose to use in future efficacy trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6805132PMC
http://dx.doi.org/10.1007/s00432-018-2791-5DOI Listing

Publication Analysis

Top Keywords

brain tumors
16
safety pioglitazone
12
patient receiving
12
brain
9
brain tumor
8
metastatic brain
8
dose-escalation phase
8
dose-expansion phase
8
receiving 225 mg
8
225 mg instance
8

Similar Publications

Postoperative concurrent chemoradiotherapy plus apatinib for patients with high-grade glioma: a retrospective cohort study.

Chin Clin Oncol

December 2024

Department of Radiotherapy, The 900th Hospital of the Joint Logistics Team (Dongfang Hospital), Xiamen University, Fuzhou, China.

Background: Radiotherapy plus temozolomide followed by adjuvant temozolomide was the standard treatment for high-grade gliomas. This study aimed to explore the effectiveness and safety of the addition of apatinib in patients with high-grade gliomas after surgery.

Methods: In this retrospective cohort study, patients with high-grade glioma [World Health Organization (WHO) grade III or IV] treated with apatinib and concurrent chemoradiotherapy (cCRT) after surgery from October 2017 to February 2021 were reviewed.

View Article and Find Full Text PDF

Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities.

J Transl Med

January 2025

Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.

Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors.

View Article and Find Full Text PDF

The brain is composed of a dense and ramified vascular network of arteries, veins and capillaries of various sizes. One way to assess the risk of cerebrovascular pathologies is to use computational models to predict the physiological effects of reduced blood supply and correlate these responses with observations of brain damage. Therefore, it is crucial to establish a detailed 3D organization of the brain vasculature, which could be used to develop more accurate in silico models.

View Article and Find Full Text PDF

GNG2 inhibits brain metastases from colorectal cancer via PI3K/AKT/mTOR signaling pathway.

Sci Rep

January 2025

Department of Gastrointestinal Surgery, Third Xiangya Hospital, Central South University, Changsha, 410006, China.

G-protein gamma subunit 2 (GNG2) plays a vital role in various cellular processes, yet its specific function in colorectal cancer (CRC), particularly in highly invasive cases and brain metastasis, remains unclear. This study identifies GNG2 as a key regulator in metastatic colorectal cancer (mCRC) through bioinformatics analysis and experimental validation. Functional enrichment analyses reveal that GNG2 is related to the PI3K/AKT/mTOR signaling pathway and cell cycle regulation.

View Article and Find Full Text PDF

The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!