Halophilic archaea are known to produce a diverse array of pigments for phototrophy and photoprotection. The aim of this paper was to determine the role of a gene encoding the predicted cytochrome P450 monooxygenase (CYP174A1) in pigment synthesis through a combined genetic, phenotypic, and transcriptomic approach. We report on the observed phenotype changes [increased bacterioruberin levels and the loss of purple membrane (PM)] between the R1 and its -deletion mutant. In addition, we report on the whole-genome DNA microarray analysis, which supports the phenotype of PM loss. This work expands our understanding of the -gene regulon, and its relation to carotenoid biosynthesis, and sheds light on our broader understanding of the role (s) of CYP174A1 in archaeal pigment synthesis. To date, this is the first study in which the physiological role of any cytochrome P450 monooxygenase (CYP450) in extremely halophilic archaea has been reported.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212597PMC
http://dx.doi.org/10.3389/fmicb.2018.02563DOI Listing

Publication Analysis

Top Keywords

cytochrome p450
12
p450 monooxygenase
12
purple membrane
8
extremely halophilic
8
genetic phenotypic
8
phenotypic transcriptomic
8
halophilic archaea
8
pigment synthesis
8
complex effects
4
effects cytochrome
4

Similar Publications

Mobocertinib is a kinase inhibitor designed to selectively target epidermal growth factor receptor (EGFR) exon 20 insertion (ex20ins) mutations in non-small cell lung cancer. This drug-drug interaction study assessed the effect of multiple-dose administration of mobocertinib on the pharmacokinetics (PK) of midazolam, a sensitive cytochrome P450 3A substrate. Patients with locally advanced or metastatic non-small cell lung cancer refractory/intolerant to standard available therapy were enrolled.

View Article and Find Full Text PDF

Bile acids (BAs) play important roles in the context of lipid homeostasis and inflammation. Based on extensive preclinical mouse studies, BA signaling pathways have been implicated as therapeutic targets for cardiovascular diseases. However, differences in BA metabolism between mice and humans hamper translation of preclinical outcomes.

View Article and Find Full Text PDF

Exposure to particulate matter (PM) in the air harms human health. Most studies on particulate matter's (PM) effects have primarily focused on respiratory and cardiovascular diseases. Recently, IL-32θ, one of the IL-32 isoforms, has been demonstrated to modulate cancer development and inflammatory responses.

View Article and Find Full Text PDF

NysL, a cytochrome P450 monooxygenase from the Gram-positive bacterium Streptomyces noursei, catalyzes the C10 hydroxylation of 10-deoxynystain to nystatin A, a clinically important antifungal. In this study, we present the 2.0 Å resolution crystal structure of NysL bound to nystatin A.

View Article and Find Full Text PDF

Molecular insights into developmental toxicity induced by PCB77 exposure on zebrafish via integrating transcriptomics with adverse outcome pathway.

Sci Total Environ

January 2025

Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. Electronic address:

Polychlorinated biphenyls (PCBs), a typical type of persistent organic pollutants (POPs), were previously widely employed as insulating and heat exchange fluids in transformers and capacitors. Despite knowledge of its adverse effects, the precise mechanism underlying PCB77 toxicity remains enigmatic. In this study, we utilized zebrafish as a model organism to explore the toxic effects of various concentrations of PCB77 (10, 200, and 1000 μg/L) and its molecular toxicity mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!