Most experimental studies of facial expression processing have used static stimuli (photographs), yet facial expressions in daily life are generally dynamic. In its original photographic format, the Karolinska Directed Emotional Faces (KDEF) has been frequently utilized. In the current study, we validate a dynamic version of this database, the KDEF-dyn. To this end, we applied animation between neutral and emotional expressions (happy, sad, angry, fearful, disgusted, and surprised; 1,033-ms unfolding) to 40 KDEF models, with morphing software. Ninety-six human observers categorized the expressions of the resulting 240 video-clip stimuli, and assessed the evidence for 6 expressions and 20 facial action units (AUs) at 31 intensities. Low-level image properties (luminance, signal-to-noise ratio, etc.) and other purely perceptual factors (e.g., size, unfolding speed) were controlled. Human recognition performance (accuracy, efficiency, and confusions) patterns were consistent with prior research using static and other dynamic expressions. Automated assessment of expressions and AUs was sensitive to intensity manipulations. Significant correlations emerged between human observers' categorization and automated classification. The KDEF-dyn database aims to provide a balance between experimental control and ecological validity for research on emotional facial expression processing. The stimuli and the validation data are available to the scientific community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212581PMC
http://dx.doi.org/10.3389/fpsyg.2018.02052DOI Listing

Publication Analysis

Top Keywords

human observers
8
automated assessment
8
emotional facial
8
facial expressions
8
kdef-dyn database
8
facial expression
8
expression processing
8
expressions
7
facial
5
human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!