Purpose: Retinitis pigmentosa (RP) represents a large group of inherited retinal diseases characterized by clinical and genetic heterogeneity. Among patients with RP in northern Sweden, we identified two severely affected siblings and aimed to reveal a genetic cause underlying their disease.

Methods: Whole exome sequencing (WES) was performed on both affected individuals. Sequence variants were filtered using a custom pipeline to find a rare or novel variant predicted to affect protein function. Genome-wide genotyping was used to identify copy number variants (CNVs) and homozygous regions with potential disease causative genes.

Results: WES uncovered a novel heterozygous variant in the () gene, c.2309A>G, p.Glu770Gly located in the tyrosine kinase domain and predicted to be likely pathogenic. The second variant, a large heterozygous deletion encompassing exons 1 to 7 of the gene, was revealed with genome-wide genotyping. The CNV analysis suggested breakpoints of the deletion, in the 5'-untranslated region and in intron 7. We identified genomic sequences at the site of the deletion as part of L1ME4b (LINE/L1) and AluSx3 that indicated a non-homologous recombination as a mechanism of the deletion evolvement.

Conclusions: Patients with RP in this study were carriers of two novel allelic mutations in the gene, a missense variant in exon 17 and an approximate 91 kb genomic deletion. Mapping of the deletion breakpoints allowed molecular testing of a cohort of patients with RP with allele-specific PCR. These findings provide additional information about mutations in for molecular testing of unsolved recessive RP cases and highlight the necessity for analysis of large genomic deletions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6197864PMC

Publication Analysis

Top Keywords

non-homologous recombination
8
retinitis pigmentosa
8
genome-wide genotyping
8
molecular testing
8
deletion
7
recombination alu
4
alu line-1
4
line-1 repeats
4
repeats deletion
4
deletion causing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!