Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Sedentary behavior and lack of physical activity are key modifiable behavioral risk factors for chronic health problems, such as obesity and diabetes. Little is known about how sedentary behavior and physical activity among adolescents spatially cluster. The objective was to detect spatial clustering of sedentary behavior and physical activity among Boston adolescents. Data were used from the 2008 Boston Youth Survey Geospatial Dataset, a sample of public high school students who responded to a sedentary behavior and physical activity questionnaire. Four binary variables were created: 1) TV watching (>2 hours/day), 2) video games (>2 hours/day), 3) total screen time (>2 hours/day); and 4) 20 minutes/day of physical activity (≥5 days/week). A spatial scan statistic was utilized to detect clustering of sedentary behavior and physical activity. One statistically significant cluster of TV watching emerged among Boston adolescents in the unadjusted model. Students inside the cluster were more than twice as likely to report > 2 hours/day of TV watching compared to respondents outside the cluster. No significant clusters of sedentary behavior and physical activity emerged. Findings suggest that TV watching is spatially clustered among Boston adolescents. Such findings may serve to inform public health policymakers by identifying specific locations in Boston that could provide opportunities for policy intervention. Future research should examine what is linked to the clusters, such as neighborhood environments and network effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219465 | PMC |
http://dx.doi.org/10.1007/s10708-017-9801-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!