Complete nitrification: insights into the ecophysiology of comammox Nitrospira.

Appl Microbiol Biotechnol

Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands.

Published: January 2019

Nitrification, the oxidation of ammonia via nitrite to nitrate, has been considered to be a stepwise process mediated by two distinct functional groups of microorganisms. The identification of complete nitrifying Nitrospira challenged not only the paradigm of labor division in nitrification, it also raises fundamental questions regarding the environmental distribution, diversity, and ecological significance of complete nitrifiers compared to canonical nitrifying microorganisms. Recent genomic and physiological surveys identified factors controlling their ecology and niche specialization, which thus potentially regulate abundances and population dynamics of the different nitrifying guilds. This review summarizes the recently obtained insights into metabolic differences of the known nitrifiers and discusses these in light of potential functional adaptation and niche differentiation between canonical and complete nitrifiers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6311188PMC
http://dx.doi.org/10.1007/s00253-018-9486-3DOI Listing

Publication Analysis

Top Keywords

complete nitrifiers
8
complete
4
complete nitrification
4
nitrification insights
4
insights ecophysiology
4
ecophysiology comammox
4
comammox nitrospira
4
nitrospira nitrification
4
nitrification oxidation
4
oxidation ammonia
4

Similar Publications

Enrichment of a heterotrophic nitrifying and aerobic denitrifying bacterial consortium: Microbial community succession and nitrogen removal characteristics and mechanisms.

Bioresour Technol

December 2024

Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China. Electronic address:

This study cultivated a bacterial consortium (S60) from landfill leachate that exhibited effective heterotrophic nitrification and aerobic denitrification (HN-AD) properties. Under aerobic conditions, the removal of NH-N reached 100 % when the S60 consortium utilised NH-N either as the sole nitrogen source or in combination with NO-N and NO-N. Optimal HN-AD performance was achieved with sodium acetate as a carbon source and a pH of 7.

View Article and Find Full Text PDF

Long-term stability of comammox Nitrospira under weakly acidic conditions and their acid-adaptive mechanisms revealed by genome-centric metatranscriptomics.

Bioresour Technol

December 2024

School of Environment, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.

Despite their widespread presence in acidic environments, the stability and adaptative mechanisms of complete ammonia oxidization (comammox) bacteria remain poorly understood. In this three-year study, comammox Nitrospira consistently dominated both abundance and activity in an acidic nitrifying reactor (pH = 6.3-6.

View Article and Find Full Text PDF

Porous polyurethane biocarriers could enhance system nitrification resilience under high organic loading by retaining key functional bacteria.

Water Res

December 2024

National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Resilience to increasing organic loading rates (OLRs) is the key to maintaining stable performance in treating industrial wastewater. First, this study compared the stability, particularly the nitrification performance, of two lab-scale moving bed biofilm reactors (MBBRs) filled with porous polyurethane biocarriers with two conventional activated sludge reactors (ASRs) in the treatment of synthetic coking wastewater under OLRs increasing from 0.3 kg to 1.

View Article and Find Full Text PDF

Acidophilic partial nitrification rapid startup and robustness validation for municipal wastewater treatment: Operation performance and microorganism insights.

Water Res

December 2024

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.

Acidophilic partial nitrification (a-PN) is a promising short-flow nitrogen conversion biotechnology, but achieving a rapid startup remains a significant challenge. This study explored strategies for starting up a-PN in real municipal wastewater treatment using sequencing batch reactors (SBRs). The influent alkalinity-to-NH molar ratio was maintained at 0.

View Article and Find Full Text PDF

Chemolithoautotrophic nitrifiers are model groups for linking phylogeny, evolution, and ecophysiology. Ammonia-oxidizing bacteria (AOB) typically dominate the first step of ammonia oxidation at high ammonium supply rates, ammonia-oxidizing archaea (AOA) and complete ammonia-oxidizing Nitrospira (comammox) are often active at lower supply rates or during AOB inactivity, and nitrite-oxidizing bacteria (NOB) complete canonical nitrification. Soil virus communities are dynamic but contributions to functional processes are largely undetermined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!