The traditional Gram-staining method, which was invented more than a century ago for differentiating bacteria as Gram positive or Gram negative, is still widely practiced in microbiology. However, Gram staining suffers from several problems which can affect the accuracy of the diagnosis. Here, we report a new Gram-negative-specific fluorescent probe, which is based on a narrow-spectrum antibiotic, tridecaptin A1, and allows selective staining of Gram-negative bacteria in different fixed bacterial samples. Solid-phase peptide synthesis was used to prepare the tridecaptin A1-fluorophore conjugate with a single structure. Labeling selectivity of the probe toward Gram-negative bacteria was confirmed by testing against a panel of bacterial species. By combining the use of a previously reported Gram-positive-specific fluorescent probe, we then further showed the capability of the new probe in differential labeling of a number of complex bacterial samples, which included a mouse gut microbiota cultured in vitro, as well as microbiotas collected from the human oral cavity, soil, and crude oil. High labeling selectivity and coverage were observed in most samples. This method offers a new Gram-negative-specific probe with a defined structure, which allows facile fluorescence-based differentiation of Gram-positive and Gram-negative bacteria for further microbial studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-018-1465-0DOI Listing

Publication Analysis

Top Keywords

gram-negative bacteria
16
fluorescent probe
12
probe differential
8
staining gram-negative
8
bacterial samples
8
labeling selectivity
8
probe
6
bacteria
5
tridecaptin-based fluorescent
4
differential staining
4

Similar Publications

Tilapia lake virus (TiLV) disease is highly contagious and causes substantial mortality in tilapia. Currently, no effective treatments or commercial vaccines are available to prevent TiLV infection. In this study, TiLV segment 4 (S4) was cloned into the pET28a(+)vector and transformed into Escherichia coli BL21(DE3).

View Article and Find Full Text PDF

Chia Derived Peptides Affecting Bacterial Membrane and DNA: Insights from Staphylococcus aureus and Escherichia coli Studies.

Plant Foods Hum Nutr

December 2024

Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, Mérida, 97203, Yucatán, México.

The increasing concern over microbial resistance to conventional antimicrobial agents used in food preservation has led to growing interest in plant-derived antimicrobial peptides (AMPs) as alternative solutions. In this study, the antimicrobial mechanisms of chia seed-derived peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were investigated against Staphylococcus aureus (SA) and Escherichia coli (EC). Fluorometric assays and scanning electron microscopy (SEM) demonstrated that the peptides disrupt bacterial membranes, with propidium iodide (PI) uptake reaching 72.

View Article and Find Full Text PDF

Helicobacter pylori (H. pylori) is one of the most globally prevalent bacteria, closely associated with gastrointestinal diseases such as gastric ulcers and chronic gastritis. Current clinical methods primarily involve Carbon-13 and Carbon-14 urea breath test, both carrying potential safety risks.

View Article and Find Full Text PDF

ICEmST contributes to colonization of Salmonella in the intestine of piglets.

Sci Rep

December 2024

Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.

Salmonella enterica serovar 4,[5],12:i:- sequence type 34 (ST34) has recently become a global concern for public and animal health. The acquisition of mobile genetic element ICEmST, which contains two copper tolerance gene clusters, cus and pco, influences the epidemic success of this clone. Copper is used as a feed additive in swine at levels that potentially lead to selection pressure for Enterobacteriaceae; however, it remains unclear whether the copper tolerance system of ICEmST functions in vivo.

View Article and Find Full Text PDF

The comparison of the antioxidant, antibacterial and antiviral potential of Polish fir honeydew and Manuka honeys.

Sci Rep

December 2024

Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St, Rzeszow, 35-601, Poland.

The aim of the present study was to compare the antioxidant, antibacterial and antiviral activities of Podkarpackie coniferous honeydew honey and Manuka honey. The quality of tested honey samples (honeydew-12 and Manuka-4) regarding honey standard was evaluated as well as additional indicators (methylglyoxal, total phenolics and HPTLC phenolic profile, antioxidant potential, glucose oxidase activity, and hydrogen peroxide) were compared. Antibacterial potential was analyzed against Gram-positive (S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!