Background And Purpose: BCG unresponsive bladder cancer is an inherently resistant disease state for which the preferred treatment is radical cystectomy. To date, no effective intravesical therapies exist for patients who possess these resistant tumors. For this reason, many research groups are actively investigating/testing novel therapeutic agents to aid in bladder preservation for this patient population. This review article describes our 15-year experience developing and testing IFN-based gene therapy.
Methods: A comprehensive review was performed of all studies pertaining to IFN-based gene therapy for non-muscle invasive bladder cancer from 2003 to 2018.
Results And Conclusions: Over the past two decades, gene therapy has evolved into a powerful tool in our fight against cancer. After overcoming the initial barriers associated with gene delivery to the bladder, we have made significant strides forward in developing this novel therapeutic strategy for the treatment of this inherently resistant disease state. Our results to date are very encouraging; however, much work lies ahead to better understand and optimize this novel approach for treating non-muscle invasive bladder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511323 | PMC |
http://dx.doi.org/10.1007/s00345-018-2553-7 | DOI Listing |
Medicine (Baltimore)
January 2025
Department of Respiratory and Critical Care Medicine, Zhongshan City People's Hospital, Zhongshan, Guangdong Province, China.
Rationale: ROS proto-oncogene 1 (ROS1) fusion is a rare but important driver mutation in non-small cell lung cancer, which usually shows significant sensitivity to small molecule tyrosine kinase inhibitors. With the widespread application of next-generation sequencing (NGS), more fusions and co-mutations of ROS1 have been discovered. Non-muscle myosin heavy chain 9 (MYH9) is a rare fusion partner of ROS1 gene as reported.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Pediatric Hematology, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.
Rationale: This study presents a case of hemoglobin M disease (HMD), a rare inherited disorder characterized by persistent cyanosis and hypoxemia, observed across 3 generations within a single family. The diagnosis of HMD poses significant challenges, particularly in asymptomatic individuals, due to its rarity and the subtlety of its symptoms. Notably, there is a scarcity of reports on methemoglobinemia in pediatric populations, which further complicates early detection and intervention.
View Article and Find Full Text PDFBlood
January 2025
Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.
View Article and Find Full Text PDFAdv Clin Exp Med
January 2025
Department of Dermatology, The Affiliated Hospital to Changchun University of Chinese Medicine, China.
Background: The skin, with its robust structural integrity and advanced immune defense system, serves as a critical protective barrier against environmental toxins and carcinogenic compounds. Despite this, it remains vulnerable to the harmful effects of certain hazardous agents.
Objectives: This study aimed to investigate the chemopreventive potential of β-caryophyllene (BCP) in mitigating 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin carcinogenesis, focusing on the modulation of apoptosis and PI3K/AKT signaling pathways.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!