Synthesis, and anti-proliferative, Pim-1 kinase inhibitors and molecular docking of thiophenes derived from estrone.

Bioorg Chem

Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.

Published: March 2019

AI Article Synopsis

  • Research focused on modifying steroids like estrone to create new biologically active compounds through heterocyclization, specifically altering Ring D.
  • The process involved reactions with cyanoacetylhydrazine and sulfur to produce thiophene derivatives, and subsequent reactions leading to thiazole derivatives and hydrazone compounds.
  • A series of these novel compounds were tested for their effectiveness against various cancer cell lines and tyrosine kinases, revealing several promising candidates that showed potential for inhibiting Pim-1 kinase.

Article Abstract

Heterocyclization of steroids were reported to give biologically active products where ring D modification occured. Estrone (1) was used as a template to develop new heterocyclic compounds. Ring D modification of 1 through its reaction with cyanoacetylhydrazine and elemental sulfur gave the thiophene derivative 3. The latter compound reacted with acetophenone derivatives 4a-c to give the hydrazide-hydrazone derivatives 5a-c, respectively. In addition, compound 3 formed thiazole derivatives through its first reaction with phenylisothiocyanate to give the thiourea derivative 9 followed by the reaction of the later with α-halocarbonyl compounds. In the present work a series of novel estrone derivatives were designed, synthesized and evaluated for their in vitro biological activities against c-Met kinase, and six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG and SMMC-7721). The most promising compounds 5b, 5c, 11a, 13c, 15b, 15c, 15d, 17a and 17b were further investigated against the five tyrosine kinases c-Kit, Flt-3, VEGFR-2, EGFR, and PDGFR. Compounds 5b, 15d, 17a and 17b were selected to examine their Pim-1 kinase inhibition activity where compounds 15d and 17b showed high activities. Molecular docking of some of the most potent compounds was demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2018.10.067DOI Listing

Publication Analysis

Top Keywords

pim-1 kinase
8
molecular docking
8
ring modification
8
15d 17a
8
17a 17b
8
compounds 15d
8
compounds
6
synthesis anti-proliferative
4
anti-proliferative pim-1
4
kinase inhibitors
4

Similar Publications

Background: Abdominal aortic aneurysm (AAA) is a serious life-threatening vascular disease, and its ferroptosis/cuproptosis markers have not yet been characterized. This study was aiming to identify markers associated with ferroptosis/cuproptosis in AAA by bioinformatics analysis combined with machine learning models and to perform experimental validation.

Methods: This study used three scRNA-seq datasets from different mouse models and a human PBMC bulk RNA-seq dataset.

View Article and Find Full Text PDF

FDA-approved drugs as PIM-1 kinase inhibitors: A drug repurposed approach for cancer therapy.

Int J Biol Macromol

December 2024

Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India. Electronic address:

PIM-1 kinase, a member of the Serine/Threonine kinase family, has emerged as a promising therapeutic target in various cancers due to its role in promoting tumor growth and resistance to conventional therapies. In this study, we employed a structure-based approach to screen 3800 FDA-approved drugs to discover potential inhibitors of PIM-1 after an initial selection of 50 candidates based on high docking scores. Four drugs, stanozolol, alfaxalone, rifaximin, and telmisartan, were identified as strong PIM-1 binders, interacting with key residues in the ATP-binding pocket of the kinase.

View Article and Find Full Text PDF

Harnessing natural compounds for PIM-1 kinase inhibition: A synergistic approach using virtual screening, molecular dynamics simulations, and free energy calculations.

Cell Mol Biol (Noisy-le-grand)

November 2024

Department of Health Informatics, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia .

Cancer has substantial economic ramifications for healthcare systems. PIM kinases, specifically PIM-1, are commonly upregulated in different types of cancers, thereby promoting cancer development. PIM-1 inhibitors have garnered interest for their potential efficacy in cancer therapy.

View Article and Find Full Text PDF

Pro-viral Insertion site for the Moloney Murine Leukemia virus 1 (PIM-1) is widely involved in various biological processes and diseases, which is based on its structure and functional sites. However, the relationship between active sites and function of PIM-1 kinase remains unclear due to the lack of effective study approaches in live cells. Herein, to visualize the effect of different active sites in PIM-1 protein on its function activity and relation with PI3K/Akt/mTOR pathway, three mutant probes of EPHY which was developed previously based on fluorescence resonance energy transfer (FRET) technology to detect PIM-1 kinase activity in living cells were further constructed and transfected into cells followed by treating with PIM-1 inhibitors, ATP and PI3K inhibitor, respectively.

View Article and Find Full Text PDF

A novel series of nicotinonitrile and pyrazolyl nicotinonitrile were synthesized, and their PIM-1 kinase inhibitors and caspase activators were investigated. New Manich bases 6-8 were synthesized reaction of pyridine 4 with piperidine, dimethyl amine, and morpholine in the presence of formalin. On the other hand, the pyrazolyl analogues 10-12 were synthesized heterocyclization of acetohydrazide derivative 9 with acetylacetone, malononitrile, and ethyl cyanoacetate, respectively, in ethanol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!