Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction. Most patients have pathogenic autoantibodies against the acetylcholine receptor (AChR). In the last years a novel subpopulation of MG patients has been described that harbors antibodies against low-density lipoprotein receptor-related protein 4 (Lrp4), another postsynaptic neuromuscular antigen. In early-onset AChR MG (EOMG), the thymus plays an important role in immunopathogenesis, and early thymectomy is beneficial. It is still unknown if the thymus plays any role in Lrp4-MG. In this pilot study, we compared thymus samples from four patients with Lrp4-MG (one pre-treated with immunosuppressive drugs), four non-MG controls and five EOMG patients (not pretreated with immunosuppressive drugs). Immunohistochemistry of the Lrp4-MG thymi revealed normal architecture, with normal numbers and distribution of B-cells, lymphoid follicles and Hassall's corpuscles. Primary CD23 lymphoid follicles were similarly infrequent in Lrp4-MG and control thymic sections. In none of the control or Lrp4-MG thymi did we find secondary follicles with CD10 germinal centers. These were evident in 2 of the 5 EOMG thymi, where primary lymphoid follicles were also more frequent on average, thus showing considerable heterogeneity between patients. Even if characteristic pathological thymic changes were not observed in the Lrp4 subgroup, we cannot exclude a role for the thymus in Lrp4-MG pathogenesis, since one Lrp4-MG patient went into clinical remission after thymectomy alone (at one year follow-up) and one more improved after thymectomy in combination with immunosuppressive therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.autrev.2018.07.011DOI Listing

Publication Analysis

Top Keywords

lymphoid follicles
12
myasthenia gravis
8
thymus plays
8
plays role
8
immunosuppressive drugs
8
lrp4-mg thymi
8
lrp4-mg
7
patients
5
characterization thymus
4
thymus lrp4
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!