A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbco5ss11ji8pv3ifb8clb9j1cqegegab): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of inhibitory mechanisms in pseudo-allergy involving Mrgprb2/MRGPRX2-mediated mast cell activation. | LitMetric

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2018.10.034DOI Listing

Publication Analysis

Top Keywords

identification inhibitory
4
inhibitory mechanisms
4
mechanisms pseudo-allergy
4
pseudo-allergy involving
4
involving mrgprb2/mrgprx2-mediated
4
mrgprb2/mrgprx2-mediated mast
4
mast cell
4
cell activation
4
identification
1
mechanisms
1

Similar Publications

Antifungal Properties of Polycephalomyces nipponicus (Ascomycetes) against Candida albicans: Potential for Novel Therapeutic Development.

Int J Med Mushrooms

December 2024

Department of Biology, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham, Thailand; Microbiology and Applied Microbiology Research Unit, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham, Thailand.

Candida albicans has the potential to turn pathogenic and cause mild to severe infections, particularly in people with weakened immune systems. Novel therapeutics are required due to its morphological alterations, biofilm development, and resistance to antifungal drugs. Polycephalomyces nipponicus, a traditional East Asian medicinal fungus, has shown potential as an antifungal agent.

View Article and Find Full Text PDF

Because of the urgent need for new antibiotics to treat drug-resistant bacterial pathogens, we employed an assay that rapidly screens large quantities of compounds for their ability to interfere with bacterial protein synthesis, in particular, the delivery of amino acids to the ribosome via tRNA and elongation factor Tu (EF-Tu). We have identified a drug lead, named MGC-10, which kills Gram-positive bacteria, including methicillin-resistant (MRSA), with a MIC of 6 µM, while being harmless to mammalian cells in that concentration range. The antibacterial activity of MGC-10 was broad against over 50 strains of antibiotic-resistant samples obtained from hospital infections, where MGC-10 inhibited all tested strains of MRSA.

View Article and Find Full Text PDF

The pipeline for new drugs against multidrug-resistant remains limited, highlighting the urgent need for innovative treatments. New strategies, such as membrane-targeting molecules acting as adjuvants, aim to enhance antibiotic effectiveness and combat resistance. RW01, a cyclic peptide with low antimicrobial activity, was selected as an adjuvant to enhance drug efficacy through membrane permeabilization.

View Article and Find Full Text PDF

Deepstack-ACE: A deep stacking-based ensemble learning framework for the accelerated discovery of ACE inhibitory peptides.

Methods

December 2024

Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand. Electronic address:

Identifying angiotensin-I-converting enzyme (ACE) inhibitory peptides accurately is crucial for understanding the primary factor that regulates the renin-angiotensin system and for providing guidance in developing new potential drugs. Given the inherent experimental complexities, using computational methods for in silico peptide identification could be indispensable for facilitating the high-throughput characterization of ACE inhibitory peptides. In this paper, we propose a novel deep stacking-based ensemble learning framework, termed Deepstack-ACE, to precisely identify ACE inhibitory peptides.

View Article and Find Full Text PDF

Clerodane diterpenoids from the vine stems of Fibraurea recisa Pierre and their hepatic gluconeogenesis inhibitory activity.

Phytochemistry

December 2024

Key Laboratory of Ethnic Medicine Resource Chemistry, Ministry of Education, Yunnan Minzu University, Kunming, 650500, Yunnan, People's Republic of China; Yunnan Key Laboratory of Chiral Functional Substance Research and Application, Yunnan Minzu University, Kunming, 650504, People's Republic of China. Electronic address:

Fibraurea recisa Pierre is a vine plant and its vine stems are used as a traditional Chinese medicine to treat heat toxin, constipation, diarrhea, sore throat, eye inflammation, carbuncles, and skin ulcers. The alkaloid chemical composition of this plant has been extensively studied; however, investigations into non-alkaloid components remain limited. In this study, phytochemical studies of the vine stems of F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!