EP300-HDAC1-SWI/SNF functional unit defines transcription of some DNA repair enzymes during differentiation of human macrophages.

Biochim Biophys Acta Gene Regul Mech

Department of General Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland. Electronic address:

Published: February 2019

Differentiation of human macrophages predisposes these cells to numerous tasks, i.e. killing invading pathogens, and this entails the need for enhanced intracellular defences against stress, including conditions that may increase DNA damage. Our study shows that expression of DNA repair enzymes, such as PARP1, BRCA1 and XRCC1, are activated during macrophage development by the SWI/SNF chromatin remodelling complex, which serves as a histone acetylation sensor. It recognises and displaces epigenetically marked nucleosomes, thereby enabling transcription. Acetylation is controlled both in monocytes and macrophages by the co-operation of EP300 and HDAC1 activities. Differentiation modulates the activities of individual components of EP300-HDAC1-SWI/SNF functional unit and entails recruitment of PBAF to gene promoters. In monocytes, histone-deacetylated promoters of repressed PARP1, BRCA1 and XRCC1 respond only to HDAC inhibition, with an opening of the chromatin structure by BRM, whereas in macrophages both EP300 and HDAC1 contribute to the fine-tuning of nucleosomal acetylation, with HDAC1 remaining active and the balance of EP300 and HDAC1 activities controlling nucleosome eviction by BRG1-containing SWI/SNF. Since EP300-HDAC1-SWI/SNF operates at the level of gene promoters characterized simultaneously by the presence of E2F binding site(s) and CpG island(s), this allows cells to adjust PARP1, BRCA1 and XRCC1 transcription to the differentiation mode and to restart cell cycle progression. Thus, mutual interdependence between acetylase and deacetylase activities defines the acetylation-dependent code for regulation of histone density and gene transcription by SWI/SNF, notably on gene promoters of DNA repair enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagrm.2018.10.019DOI Listing

Publication Analysis

Top Keywords

dna repair
12
repair enzymes
12
parp1 brca1
12
brca1 xrcc1
12
ep300 hdac1
12
gene promoters
12
ep300-hdac1-swi/snf functional
8
functional unit
8
differentiation human
8
human macrophages
8

Similar Publications

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Vitamin Bs as Potent Anticancer Agents through MMP-2/9 Regulation.

Front Biosci (Landmark Ed)

January 2025

Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea.

In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment.

View Article and Find Full Text PDF

Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!