TFEB protects nucleus pulposus cells against apoptosis and senescence via restoring autophagic flux.

Osteoarthritis Cartilage

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325000, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China; Chinese Orthopaedic Regenerative Medicine Society, China. Electronic address:

Published: February 2019

Objective: Excessive apoptosis and senescence of nucleus pulposus (NP) cells are major pathological changes in intervertebral disc degeneration (IVDD) development; previous studies demonstrated pharmacologically or genetically stimulation of autophagy may inhibit apoptosis and senescence in NP cells. Transcription factor EB (TFEB) is a master regulator of autophagic flux via initiating autophagy-related genes and lysosomal biogenesis. This study was performed to confirm whether TFEB was involved in IVDD development and its mechanism.

Methods: TFEB activity was detected in NP tissues in puncture-induced rat IVDD model by immunofluorescence as well as in tert-Butyl hydroperoxide (TBHP), the reactive oxygen species (ROS) donor to induce oxidative stress, treated NP cells by western blot. After TFEB overexpression in NP cells with lentivirus transfection, autophagic flux, apoptosis and senescence percentage were assessed. In in vivo study, the lentivirus-normal control (LV-NC) or lentivirus-TFEB (LV-TFEB) were injected into the center space of the NP tissue, after 4 or 8 weeks, Magnetic resonance imaging (MRI), X ray, Hematoxylin-Eosin (HE) and Safranin O staining were used to evaluate IVDD grades.

Results: The nuclear localization of TFEB declined in degenerated rat NP tissue as well as in TBHP treated NP cells. Applying lentivirus to transfect NP cells, TFEB overexpression restored the TBHP-induced autophagic flux blockage and protected NP cells against apoptosis and senescence; these protections of TFEB are diminished by chloroquine-medicated autophagy inhibition. Furthermore, TFEB overexpression ameliorates the puncture-induced IVDD development in rats.

Conclusions: Experimental IVDD inhibited the TFEB activity. TFEB overexpression suppressed TBHP-induced apoptosis and senescence via autophagic flux stimulation in NP cell and alleviates puncture-induced IVDD development in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joca.2018.10.011DOI Listing

Publication Analysis

Top Keywords

apoptosis senescence
24
autophagic flux
20
ivdd development
16
tfeb overexpression
16
tfeb
11
nucleus pulposus
8
cells
8
pulposus cells
8
cells apoptosis
8
tfeb activity
8

Similar Publications

Senotherapy: Implications for Transplantation.

Transplantation

January 2025

Interdisciplinary Transplantation, Children's Hospital, Hannover Medical School, Hannover, Germany.

Cellular senescence has been identified as a potential driver of age-associated loss of organ function and as a mediator of age-related disease. Novel strategies in targeting senescent cells have shown promise in several organ systems to counteract functional decline, chronic inflammation, and age-dependent loss of repair capacity. Transgenic models have provided proof of principle that senolysis, the elimination of senescent cells, is an attractive strategy to overcome many age-related pathologies.

View Article and Find Full Text PDF

In age-related peripheral neurodegeneration, changes in the promotion or inhibition of endoplasmic reticulum (ER) stress response related to the ubiquitin-proteasome degradation system (UPS), autophagy and apoptosis signaling factors during aging remain unclear. In the present study, the expression of ER stress response signaling-related protein factors was examined in tibial nerves during aging in rats. Tibial nerves were extracted from continuously housed rats at 20, 50, 70, 90 and 105 weeks of age.

View Article and Find Full Text PDF

Inhibition of hydrogen peroxide-induced senescence markers by yeast-derived vacuoles in human lung fibroblasts.

Biochim Biophys Acta Mol Cell Res

January 2025

Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-Gu, Jeonju, Jeonbuk 54896, South Korea. Electronic address:

Senescence significantly contributes to aging in various tissues, influenced by factors such as lysosomal alkalinization, which disrupts autophagic flux and accumulates toxic substances. This disruption leads to oxidative stress, increased lysosomal permeability, cellular senescence, and apoptosis. Similar to mammalian lysosomes, S.

View Article and Find Full Text PDF

The key vulnerabilities and therapeutic opportunities in the USP7-p53/MDM2 axis in cancer.

Biochim Biophys Acta Mol Cell Res

January 2025

Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India. Electronic address:

The MDM2/MDMX-p53 circuitry is essential for controlling the development, apoptosis, immune response, angiogenesis, senescence, cell cycle progression, and proliferation of cancer cells. Research has demonstrated that USP7 exerts strong control over p53, MDM2, and MDMX stability, with multiple mediator proteins influencing the USP7-p53-MDM2/MDMX axis to modify p53 expression level and function. In cases where p53 is of the wild type (Wt-p53) in tumors, inhibiting USP7 promotes the degradation of MDM2/MDMX, leading to the activation of p53 signaling.

View Article and Find Full Text PDF

The regulatory mechanisms for beef tenderization by the calcium-independent phospholipase A activity of Peroxiredoxin 6.

Food Chem

January 2025

Lab of Meat Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China. Electronic address:

This study investigated the effect of the inhibition of the activity of Ca-independent Phospholipase A (iPLA) of Peroxiredoxin 6 (Prdx6) on beef tenderization in the early post-mortem period. Longissimus lumborum (LL) were incubated with or without the inhibitor of iPLA activity of Prdx6 (MJ33) for 1, 6, 12, 24, or 36 h, followed by incubation with or without the HO. iPLA activity, troponin T and desmin, Ca concentration, calpain-1, caspases, apoptosis rate, and cell morphology were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!