Aquatic ecosystems receive run-off and discharges from different sources that lead to the accumulation of contaminants such as copper. Besides producing lethal and sub-lethal effects, copper has shown to be aversive to zebrafish (Danio rerio) by triggering avoidance response. The primary aim of the present study was to evaluate how a copper gradient could affect the spatial distribution of D. rerio by triggering avoidance, preventing recolonization and isolating populations. Secondly, to what extent the food availability in a previously avoided environment could make it a less aversive environment was assessed. A non-forced, multi-compartmented exposure system with a copper gradient (0-300 μg·L), through which fish could move, was used for the avoidance and recolonization assays. To test the effect of copper on population isolation, two uncontaminated connected zones were separated by a chemical barrier with a copper concentration of 90 μg·L (a concentration producing an avoidance of 50% - AC). Zebrafish avoided copper and the 2 h-AC was 90.8 μg·L. The recolonization was in accordance with avoidance and the relationship AC/RC (RC: recolonization concentration) was around 2.5. When food was provided in the highest copper concentration, the recolonization pattern was altered, although the distribution of the fish was not statistically different from the scenario without food. The chemical barrier formed by copper (90 μg·L) impaired the migratory potential of the fish population by 41.3%; when food was provided in the last compartment, no statistically significant trend of fish moving towards that concentration was observed. Copper might act as an environmental disruptor by triggering spatial avoidance, preventing recolonization and isolating populations in zebrafish. The present study allows simultaneously including three ecological concepts to ecotoxicological studies that have received little attention: habitat selection, recolonization and habitat chemical fragmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.10.375DOI Listing

Publication Analysis

Top Keywords

copper
11
spatial avoidance
8
recolonization
8
population isolation
8
zebrafish danio
8
danio rerio
8
rerio triggering
8
triggering avoidance
8
copper gradient
8
avoidance preventing
8

Similar Publications

Machine Learning Boosted Entropy-Engineered Synthesis of CuCo Nanometric Solid Solution Alloys for Near-100% Nitrate-to-Ammonia Selectivity.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China.

Nanometric solid solution alloys are utilized in a broad range of fields, including catalysis, energy storage, medical application, and sensor technology. Unfortunately, the synthesis of these alloys becomes increasingly challenging as the disparity between the metal elements grows, due to differences in atomic sizes, melting points, and chemical affinities. This study utilized a data-driven approach incorporating sample balancing enhancement techniques and multilayer perceptron (MLP) algorithms to improve the model's ability to handle imbalanced data, significantly boosting the efficiency of experimental parameter optimization.

View Article and Find Full Text PDF

Imbalances in several trace elements related to antioxidant function may lead to autism spectrum disorder (ASD)-related physiological dysfunction. Nonetheless, contradictory results have been found on the connection between these elements and ASD, and studies of their joint effects and interactions have been insufficient. We therefore designed a case-control study of 152 ASD children and 152 age- and sex-matched typically developing (TD) children to explore the individual and combined associations of manganese (Mn), zinc (Zn), copper (Cu), and selenium (Se) with ASD.

View Article and Find Full Text PDF

Background: Plant diseases caused by plant pathogens pose a great threat to biodiversity and food security, and the problem of drug resistance caused by traditional antibiotics and fungicides is becoming more and more serious. It is urgent to develop new antibacterial molecules with low toxicity and high efficiency. Marinoquinoline A is an alkaloid isolated from marine actinomycetes and has a variety of pharmacological activities.

View Article and Find Full Text PDF

Copper-coordination driven brain-targeting nanoassembly for efficient glioblastoma multiforme immunotherapy by cuproptosis-mediated tumor immune microenvironment reprogramming.

J Nanobiotechnology

December 2024

Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.

Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.

View Article and Find Full Text PDF

Green synthesis techniques have drawn a lot of interest lately since they are beneficial to the environment and have potential uses in a variety of industries, including biomedicine. Because of their special physicochemical characteristics, copper nanoparticles (CuNPs) have become one of the most interesting options for use in biological applications among nanomaterials. An overview of green synthesis methods for CuNPs is given in this review, along with a discussion of their applications in cancer therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!