The combination of biological growth and particle loading can adversely affect hydraulic performance in drinking water biofilters. In this study, upstream oxidant addition was used to distribute biologically-derived filter clogging in granular activated carbon (GAC) biofilters. Oxidant penetration was assessed during pilot-scale operation and backwashing of dual media (GAC/sand) and multimedia (GAC/anthracite/sand) biofilters. Influent chlorine (HOCl), monochloramine (NHCl), and hydrogen peroxide (HO) residuals were optimized to react with the GAC surface in the upper portion of the filter media bed (depth < 0.5 m) to attenuate biomass development. As the oxidant residual was quenched by surface-mediated reaction with the filter media, biomass growth was promoted deeper in the filter bed (depth > 0.5 m). The oxidant-induced effects on biomass and hydraulic performance were monitored through measurements of adenosine triphosphate (ATP) and head loss accumulation at different media depths. Addition of oxidants (e.g., 0.6 mg Cl/L HOCl) could decrease terminal head loss by 20% in dual media filters and 40% in multimedia filters. These hydraulic benefits were achieved without significantly affecting removal of assimilable organic carbon (AOC), total organic carbon (TOC), turbidity, and particle counts. Oxidant type, residual concentration, media type, media age, and media depth influenced the passage of oxidant residuals and distribution of filter biomass. When oxidants were added during backwashing, oxidant residual was quenched through the bed depth from a combination of reactions with GAC media and biofilm degradation. This attenuation of residual oxidant may prevent the oxidant residual from penetrating the entire bed depth, potentially compromising backwashing objectives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2018.10.085DOI Listing

Publication Analysis

Top Keywords

hydraulic performance
12
gac biofilters
8
media
8
dual media
8
head loss
8
organic carbon
8
oxidant residual
8
bed depth
8
oxidant
7
upstream oxidants
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!