A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Noncellular Modification of Acellular Nerve Allografts for Peripheral Nerve Reconstruction: A Systematic Critical Review of the Animal Literature. | LitMetric

Noncellular Modification of Acellular Nerve Allografts for Peripheral Nerve Reconstruction: A Systematic Critical Review of the Animal Literature.

World Neurosurg

Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, IRCCS, Bologna, Italy.

Published: February 2019

Background: Acellular nerve allografts (ANAs) have been established as promising alternatives to autologous nerve grafts, which represent the reference standard. Our research group recently performed a systematic review of reported cell-based-enriching methods for recellularization of ANAs. Recellularization results in consistent improvement of peripheral neuroregeneration compared with plain ANAs. We systematically reviewed the effects on nerve regeneration when ANA enrichment was obtained through biological, chemical, and physical modification instead of cells.

Methods: The PubMed, ScienceDirect, Medline, and Scopus databases were searched for reports of noncellular modification of ANAs, reported from January 2007 to December 2017. The inclusion criteria were English language, noncellular enrichment of ANAs in peripheral nerve regeneration, an in vivo study design, and postgrafting neuroregenerative outcomes assessment. The exclusion criteria were the central nervous system as the site of ANA application, nerve conduits, xenografts, case series, case reports, and reviews.

Results: Only animal studies were found to be eligible. We included 16 studies, which were analyzed regarding the animal model, decellularization method, graft-enriching mode, and neuroregenerative tests performed.

Conclusions: Noncellular-based stimulation of ANAs demonstrated positive effects on recovery of nerve function compared with nerve grafting compared with plain ANAs. The neuroregenerative effect of autografting still appeared superior to ANAs, even with noncellular enrichment of ANAs. However, we found that in a few studies, modified ANAs closely approached or even outperformed autografts. Future research should include more preclinical investigations of this promising tool and clinical translation to increase the level of evidence available in the challenging field of peripheral nerve reconstruction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2018.10.195DOI Listing

Publication Analysis

Top Keywords

peripheral nerve
12
nerve
10
anas
10
noncellular modification
8
acellular nerve
8
nerve allografts
8
nerve reconstruction
8
compared plain
8
plain anas
8
nerve regeneration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!