LncRNA SNHG1 alleviates OGD induced injury in BMEC via miR-338/HIF-1α axis.

Brain Res

Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha 410013, PR China. Electronic address:

Published: July 2019

Background: Brain microvascular endothelial cell (BMEC) is an important therapeutic target for the inhibition of brain vascular dysfunction in ischemic stroke. Expression of long non-coding RNA SNHG1 is reportedly upregulated in BMEC after OGD. The present study aims to investigate the potential roles of SNHG1 in OGD-induced injury in BMEC.

Methods: Mice primary brain microvascular endothelial cells (BMEC) were cultured under "normal" or "oxygen/glucose-deprived" (OGD) conditions. The expression of SNHG1 and miR-338 after OGD were examined by qPCR. shRNA against SNHG1 was used to knockdown SNHG1 in BMEC. MiR-338-3p mimic and inhibitor were used to change the expression of miR-338 in BMEC. The relationship between SNHG1 and miR-338, and the relationship between miR-338 and HIF-1α were clarified using RNA pull-down and luciferase reporter gene assays, respectively.

Results: SNHG1 and miR-338 were upregulated in OGD induced BMEC. SNHG1 silence aggravated OGD-induced cell apoptosis by down-regulating Bcl-2, HIF-1α and VEGF-A, and upregulating caspase 3 activity and Bax. MiR-338 was upregulated in SNHG1-silenced BMEC. RNA pull-down assays showed that SNHG1 could be directly bound by miR-338. In addition, miR-338 overexpression reduced cell viability in OGD while miR-338 inhibition protected BMEC against OGD-induced injury. Furthermore, luciferase reporter assay showed that HIF-1α was a direct target of miR-338.

Conclusions: SNHG1 exerted protective effects against OGD induced injury via sponging miR-338, thus upregulating HIF-1α/VEGF-A in BMEC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2018.11.003DOI Listing

Publication Analysis

Top Keywords

ogd induced
12
snhg1 mir-338
12
bmec
10
snhg1
10
mir-338
10
induced injury
8
brain microvascular
8
microvascular endothelial
8
ogd-induced injury
8
rna pull-down
8

Similar Publications

Background: Myocardial ischemia-reperfusion (I/R) injury and coronary microcirculation dysfunction (CMD) are observed in patients with myocardial infarction after vascular recanalization. The antianginal drug trimetazidine has been demonstrated to exert a protective effect in myocardial ischemia-reperfusion injury.

Objectives: This study aimed to investigate the role of trimetazidine in endothelial cell dysfunction caused by myocardial I/R injury and thus improve coronary microcirculation.

View Article and Find Full Text PDF

TNFSF9 Silence Impedes Cerebral Ischemia-Reperfusion Injury via Modulating SLC3A2 Expression in Brain Microvascular Endothelial Cells.

J Mol Neurosci

January 2025

Department of Special Examination, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, No. 305 Tianmushan Road, Hangzhou City, 310013, Zhejiang, China.

Cerebral ischemia-reperfusion injury (CIRI), which stays unresolved in the clinic, occurs after recanalization of blood vessels serving brain tissues in acute ischemic stroke patients and can result in massive brain cell death, and cell ferroptosis contributes greatly to this process. Our research firstly found that TNFSF9 expression harbored diagnostic value on CIRI patients and intended to further investigate its regulatory mechanism in CIRI, which might facilitate its diagnostic and therapeutic application in the clinic. The level of TNSF9 mRNA was augmented in the plasma of CIR patients, and its silence impeded ferroptosis, apoptosis, and release of inflammatory mediators of BMECs with OGD/R treatment.

View Article and Find Full Text PDF

Zhongfeng Xingnao Liquid ameliorates post-stroke cognitive impairment through sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway.

Chin J Nat Med

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Electronic address:

The activation of the sirtuin1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway has been shown to mitigate oxidative stress-induced apoptosis and mitochondrial damage by reducing reactive oxygen species (ROS) levels. Clinical trials have demonstrated that Zhongfeng Xingnao Liquid (ZFXN) ameliorates post-stroke cognitive impairment (PSCI). However, the underlying mechanism, particularly whether it involves protecting mitochondria and inhibiting apoptosis through the SIRT1/Nrf2/HO-1 pathway, remains unclear.

View Article and Find Full Text PDF

Ginkgolide B binds to GPX4 and FSP1 to alleviate cerebral ischemia/reperfusion injury in rats.

Toxicol Appl Pharmacol

January 2025

Department of Neurology, Yantaishan Hospital, Yantai, Shandong, China. Electronic address:

Ischemia/reperfusion (I/R) injury can increase the anomalous permeability of the blood-brain barrier and the risk of hemorrhagic conversion. Ginkgolide B (Gin B) has been recognized for its neuroprotective properties in stroke treatment. This study aimed to analyze the association of Gin B with GPX4 and FSP1 in cerebral I/R injury treatment.

View Article and Find Full Text PDF

Neuroprotective Efficacy of in Ischemic Stroke: Antioxidant and Anti-Inflammatory Mechanisms.

Cells

January 2025

Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea.

Stroke affects over 12 million people annually, leading to high mortality, long-term disability, and substantial healthcare costs. Although East Asian herbal medicines are widely used for stroke treatment, the pathways of operation they use remain poorly understood. Our study investigates the neuroprotective properties of (AM) in acute ischemic stroke using photothrombotic (PTB) and transient middle cerebral artery occlusion (tMCAO) mouse models, as well as an oxygen-glucose deprivation (OGD) model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!