A highly condensed lamellar melamine-cyanuric acid supramolecular (MCS) complex was synthesized in an autoclave at high pressure as a precursor for preparing g-C N nanosheets. Given the distinctive properties of the prepared MCS complex, an efficient g-C N nanosheet photocatalyst can be obtained by heat treatment of this MCS complex under Ar followed by calcination in air at 400 °C. The resulting nanosheets with in-plane nanoholes showed an extremely high specific surface area (≈270 m  g ) and significantly enhanced light absorption in the visible region. This phenomenon is observed for the first time in carbon nitride nanosheets. The enhanced light absorption results from the sizeable conjugated system of tri-striazine units in the carbon nitride framework, coupled with the structural defects arising from the presence of oxygen-containing groups induced during the synthesis. Consequently, the obtained carbon nitride nanosheets exhibited excellent performance for hydrogen generation under sunlight and especially under visible light. Its quantum efficiency (QE) of 20.9 % at 420 nm is one of the highest reported values for carbon nitride materials. A QE of 3.5 % could be observed even at 590 nm. The integrated QE of this material in the visible region (420-600 nm) is approximately 1 %. To the best of our knowledge this is the highest value compared to all other the carbon nitride nanosheet materials reported previously.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201802394DOI Listing

Publication Analysis

Top Keywords

carbon nitride
20
mcs complex
12
g-c nanosheets
8
highly condensed
8
condensed lamellar
8
melamine-cyanuric acid
8
acid supramolecular
8
hydrogen generation
8
enhanced light
8
light absorption
8

Similar Publications

Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions.

View Article and Find Full Text PDF

The pressing necessity to mitigate climate change and decrease greenhouse gas emissions has driven the advancement of heterostructure-based photocatalysts for effective CO₂ reduction. This study introduces a novel heterojunction photocatalyst formed by integrating potassium-doped polymeric carbon nitride (KPCN) with metallic Zn₃N₂, synthesized via a microwave-assisted molten salt method. The resulting Schottky contact effectively suppresses the reverse diffusion of electrons, achieving spatial separation of photogenerated charges and prolonging their lifetime, which significantly enhances photocatalytic activity and efficiency.

View Article and Find Full Text PDF

Enhancing Carbon Monoxide Tolerance in Low-Temperature PEM Fuel Cells through Carbon Nitride Surface Modification.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Low-temperature proton exchange membrane fuel cells (PEMFCs) reuqire highly pure hydrogen gas due to their extreme sensitivity to carbon monoxide (CO) contamination, which poses a challenge for using cost-effective reformed hydrogen sources. To address this issue, we have developed a surface modification strategy by applying a 0.5-0.

View Article and Find Full Text PDF

CO capture and separation from natural and fuel gas are important industrial issues that refer to the control of CO emissions and the purification of target gases. Here, a novel non-planar g-CN monolayer that could be synthesized the supramolecular self-assembly strategy was identified using DFT calculations. The cohesive energy, phonon spectrum, BOMD, and mechanical stability criteria confirm the stability of the g-CN monolayer.

View Article and Find Full Text PDF

Multifunctional coatings have great application value in the protection of Marine equipment, ships and ship facilities, but they still suffer from the disadvantages of high preparation cost and complicated synthesis methods. Herein, employing a simple method to synthesize black carbon nitride (BCN), as the filler in polydimethylsiloxane (PDMS) to construct BCN/PDMS composite coating with a multifunctional anti-corrosion/antifouling coating capable of photothermal self-healing property. Experimental results exhibit that the BCN/PDMS coating can still possesses excellent corrosion resistance after 28 d of immersion in the simulated seawater, and the impedance modulus still manages to reach 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!