The C-terminal domain of histone H1.0 (C-H1.0) is involved in DNA binding and is a main determinant of the chromatin condensing properties of histone H1.0. Phosphorylation at the (S/T)-P-X-(K/R) motifs affects DNA binding and is crucial for regulation of C-H1.0 function. Since C-H1.0 is an intrinsically disordered domain, solution NMR is an excellent approach to characterize the effect of phosphorylation on the structural and dynamic properties of C-H1.0. However, its very repetitive, low-amino acid-diverse and Pro-rich sequence, together with the low signal dispersion observed at the H-N HSQC spectra of both non- and tri-phosphorylated C-H1.0 preclude the use of standard H-detected assignment strategies. We have achieved an essentially complete assignment of the heavy backbone atoms (N, C' and C), as well as H and C nuclei, of non- and tri-phosphorylated C-H1.0 by applying a novel C-detected CON-based strategy. No C-H1.0 region with a clear secondary structure tendency was detected by chemical shift analyses, confirming at residue level that C-H1.0 is disordered in aqueous solution. Phosphorylation only affected the chemical shifts of phosphorylated Thr's, and their adjacent residues. Heteronuclear {H}-N NOEs were also essentially equal in the non- and tri-phosphorylated states. Hence, structural tendencies and dynamic properties of C-H1.0 free in aqueous solution are unmodified by phosphorylation. We propose that the assignment strategy used for C-H1.0, which is based on the acquisition of only a few 3D spectra, is an excellent choice for short-lived intrinsically disordered proteins with repetitive sequences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10858-018-0213-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!