Performance of a constructed wetland as an upstream intervention for stormwater runoff quality management.

Environ Sci Pollut Res Int

Department of Agricultural and Biosystems Engineering, Makerere University, P. O. Box 7062, Kampala, Uganda.

Published: December 2018

In most developing countries, stormwater runoff has had significant impacts on aquatic environment by directly causing pollution of receiving water and reduction in treatment performance of wastewater treatment plants. With increasing encroachment on natural wetlands in Uganda, constructed wetlands offer a feasible option for the environment to cope up and buffer the impact of pollutants from the ever-increasing urban masses. This study investigated the performance efficiencies of three configurations (varied by the substrate used) of microcosm wetlands to remove physicochemical parameters from stormwater runoff in Uganda. The parameters monitored included chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP). Hydraulic retention times (HRTs) of 2, 4, 6, and 8 days were studied. The mean concentrations of the physicochemical parameters in the runoff were 219.4 ± 12.8 mg/L COD, 77.4 ± 8.3 mg/L TSS, 9.0 ± 0.4 mg/L TN, and 1.6 ± 0.1 mg/L TP. Configuration A, vegetated with cattail (Typha latifolia) and bulrush (Scirpus lacustris), achieved maximum COD removal of 75.9% (HRT = 6 days), TN removal of 72.8% (HRT = 8 days), and TP removal of 62.8% (HRT = 8 days). Configuration C, the control, with no substrate, achieved the highest TSS removal of 75.6%. The results suggest that vegetated microcosm constructed wetlands can potentially be used to pre-treat stormwater within the catchment. However, an upstream sedimentation process unit is required to enhance their performance and to avoid premature clogging of the wetlands by TSS. The pre-treated stormwater reduces pollutant load into wastewater treatment plants and consequently better raw water quality for water treatment plants.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-018-3580-zDOI Listing

Publication Analysis

Top Keywords

stormwater runoff
12
treatment plants
12
wastewater treatment
8
constructed wetlands
8
physicochemical parameters
8
stormwater
5
wetlands
5
performance
4
performance constructed
4
constructed wetland
4

Similar Publications

Permeable asphalt pavement (PAP) is an efficient solution to stormwater management, allowing water to infiltrate through its layers. This reduces surface runoff and mitigates urban flooding risks. In addition to these hydrological benefits, PAP enhances water quality by filtering pollutants such as organic and inorganic materials and microplastics.

View Article and Find Full Text PDF

A new approach on design and verification of integrated sustainable urban drainage systems for stormwater management in urban areas.

J Environ Manage

January 2025

Politecnico di Milano, Department of Civil and Environmental Engineering, Italy. Electronic address:

Stormwater runoff control is often a concern due to urbanization and extreme rainfall events. Sustainable urban drainage systems can support traditional hydraulic networks in rainwater management by providing local runoff disposal and reuse of collected stormwater. The objective of the study is based on an innovative analytical-probabilistic approach for evaluating the functioning of rainwater tanks in stormwater management with the potential for using collected water for non-potable purposes.

View Article and Find Full Text PDF

Urban stormwater and rainwater in water-stressed cities serve as critical vectors for the transport and dispersion of pollutants, including very mobile compounds These pollutants, which can be influenced by factors such as land use, rainfall intensity, and urban infrastructure, pose significant risks to both human and environmental health. Although several priority pollutants have traditionally been detected in urban stormwater, little is known about the presence of very mobile compounds that may threaten urban drinking water supplies and pose environmental risks to aquatic species. In this study, 131 urban rain and stormwater samples were collected from three districts of Barcelona (Spain) and analysed for 26 very mobile pollutants that are often overlooked in conventional monitoring efforts.

View Article and Find Full Text PDF

Stormwater discharges affect PFAS occurrence, concentrations, and spatial distribution in water and bottom sediment of urban streams.

Water Res

December 2024

Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) are extensively used in urban environments and are, thus, found in urban stormwater. However, the relevance of stormwater as a pathway for PFAS to urban streams is largely unknown. This study evaluated the impact of urban stormwater runoff on PFAS concentrations and spatial distribution in three urban streams affected by stormwater discharges from separate sewer systems.

View Article and Find Full Text PDF

N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is an antioxidant commonly used in tire manufacturing, and its release into the environment has significantly increased due to rapid urbanization. When subjected to ozonation, 6PPD converts into the harmful pollutant 6PPD quinone (6PPDQ). These substances enter wastewater treatment plants (WWTPs) via stormwater runoff and pipelines, posing significant risks to the functional microorganisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!