Chronic periodontitis (CP) is a microbial dysbiotic disease linked to increased risk of oral squamous cell carcinomas (OSCCs). To address the underlying mechanisms, mouse and human cell infection models and human biopsy samples were employed. We show that the 'keystone' pathogen Porphyromonas gingivalis, disrupts immune surveillance by generating myeloid-derived dendritic suppressor cells (MDDSCs) from monocytes. MDDSCs inhibit CTLs and induce FOXP3 + T through an anti-apoptotic pathway. This pathway, involving pAKT1, pFOXO1, FOXP3, IDO1 and BIM, is activated in humans with CP and in mice orally infected with Mfa1 expressing P. gingivalis strains. Mechanistically, activation of this pathway, demonstrating FOXP3 as a direct FOXO1-target gene, was demonstrated by ChIP-assay in human CP gingiva. Expression of oncogenic but not tumor suppressor markers is consistent with tumor cell proliferation demonstrated in OSCC-P. gingivalis cocultures. Importantly, FimA + P. gingivalis strain MFI invades OSCCs, inducing inflammatory/angiogenic/oncogenic proteins stimulating OSCCs proliferation through CXCR4. Inhibition of CXCR4 abolished Pg-MFI-induced OSCCs proliferation and reduced expression of oncogenic proteins SDF-1/CXCR4, plus pAKT1-pFOXO1. Conclusively, P. gingivalis, through Mfa1 and FimA fimbriae, promotes immunosuppression and oncogenic cell proliferation, respectively, through a two-hit receptor-ligand process involving DC-SIGN/CXCR4, activating a pAKTpFOXO1BIMFOXP3 and IDO- driven pathway, likely to impact the prognosis of oral cancers in patients with periodontitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226501 | PMC |
http://dx.doi.org/10.1038/s41598-018-35126-8 | DOI Listing |
Cardiovasc Diabetol
December 2024
Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Subunit 1, polo 3, Azinhaga de Santa Comba, Celas, 3000-548, Coimbra, Portugal.
Perivascular adipose tissue (PVAT) is a dynamic tissue that affects vascular function and cardiovascular health. The connection between PVAT, the immune system, obesity, and vascular disease is complex and plays a pivotal role in the pathogenesis of vascular diseases such as atherosclerosis, hypertension, and vascular inflammation. In cardiometabolic diseases, PVAT becomes a significant source of proflammatory adipokines, leading to increased infiltration of immune cells, in cardiometabolic diseases, PVAT becomes a significant source of proinflammatory adipokines, leading to increased infiltration of immune cells, promoting vascular smooth muscle cell proliferation and migrationpromoting vascular smooth muscle cell proliferation and migration.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
Background: Cutaneous melanoma is one of the most invasive and lethal skin malignant tumors. Compared to primary melanoma, metastatic melanoma (MM) presents poorer treatment outcomes and a higher mortality rate. The tumor microenvironment (TME) plays a critical role in MM progression and immunotherapy resistance.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Department of General Surgery, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.
View Article and Find Full Text PDFMol Med
December 2024
Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.
Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.
View Article and Find Full Text PDFAm J Pathol
December 2024
Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA. Electronic address:
Tissue inhibitors of metalloproteinases (TIMPs) modulate extracellular matrix (ECM) remodeling for maintaining homeostasis and promoting cell migration and proliferation. Pathological conditions can alter TIMP homeostasis and aggravate disease progression. The roles of TIMPs have been studied in tissue-related disorders; however, their contributions to tissue repair during corneal injury are undefined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!