When a spermatozoon shows chemotactic behavior, transient [Ca] increases in the spermatozoon are induced by an attractant gradient. The [Ca] increase triggers a series of stereotypic responses of flagellar waveforms that comprise turning and straight-swimming. However, the molecular mechanism of [Ca] modulation controlled by the attractants is not well defined. Here, we examined receptive mechanisms for the sperm attractant, SAAF, in the ascidian, Ciona intestinalis, and identified a plasma membrane Ca-ATPase (PMCA) as a SAAF-binding protein. PMCA is localized in sperm flagella membranes and seems to interact with SAAF through basic amino acids located in the second and third extracellular loops. ATPase activity of PMCA was enhanced by SAAF, and PMCA inhibitors, 5(6)-Carboxyeosin diacetate and Caloxin 2A1, inhibited chemotactic behavior of the sperm. Furthermore, Caloxin 2A1 seemed to inhibit efflux of [Ca] in the sperm, and SAAF seemed to competitively reduce the effect of Caloxin 2A1. On the other hand, chemotactic behavior of the sperm was disordered not only at low-Ca, but also at high-Ca conditions. Thus, PMCA is a potent candidate for the SAAF receptor, and direct control of Ca efflux via PMCA is a fundamental mechanism to mediate chemotactic behavior in the ascidian spermatozoa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226504 | PMC |
http://dx.doi.org/10.1038/s41598-018-35013-2 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland.
Chemotaxis enables marine bacteria to increase encounters with phytoplankton cells by reducing their search times, provided that bacteria detect noisy chemical gradients around phytoplankton. Gradient detection depends on bacterial phenotypes and phytoplankton size: large phytoplankton produce spatially extended but shallow gradients, whereas small phytoplankton produce steeper but spatially more confined gradients. To date, it has remained unclear how phytoplankton size and bacterial swimming speed affect bacteria's gradient detection ability and search times for phytoplankton.
View Article and Find Full Text PDFDevelopment
January 2025
Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
Oscillatory dynamics and their modulation are crucial for cellular decision-making; however, analysing these dynamics remains challenging. Here, we present a tool that combines the light-activated adenylate cyclase mPAC with the cAMP biosensor Pink Flamindo, enabling precise manipulation and real-time monitoring of cAMP oscillation frequencies in Dictyostelium. High-frequency modulation of cAMP oscillations induced cell aggregation and multicellular formation, even at low cell densities, such as a few dozen cells.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America.
Borrelia (or Borreliella) burgdorferi, the causative agent of Lyme disease, is a motile and invasive zoonotic pathogen adept at navigating between its arthropod vector and mammalian host. While motility and chemotaxis are well known to be essential for its enzootic cycle, the role of each methyl-accepting chemotaxis proteins (MCPs) in the infectious cycle of B. burgdorferi remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Cardiac Surgery, University Hospital, Department of Surgery, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain.
The systemic inflammatory response after cardiopulmonary bypass has been widely studied. However, there is a paucity of studies that focus on the local inflammatory changes that occur in the pericardial cavity. The purpose of this study is to assess the inflammatory mediators in the pericardial fluid of patients undergoing cardiac surgery.
View Article and Find Full Text PDFBiomedicines
December 2024
Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.
Targeted therapies (e.g., ibrutinib) have markedly improved chronic lymphocytic leukemia (CLL) management; however, ~20% of patients experience disease relapse, suggesting the inadequate depth and durability of these front-line strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!