Prompt release of gases at the ground surface resulting from explosively propagated vents or large operational releases has typically been considered to be the only mode of transport for detonation gases from an underground nuclear explosion (UNE) giving rise to detectable levels of radioxenon gases in downwind atmospheric samples captured at distances exceeding 100 km. Using a model for thermally and barometrically driven post-detonation transport across the broad surface of a simulated UNE site, we show in conjunction with the results of an atmospheric tracer-release experiment that even deep, well-contained UNEs, without prompt vents or leaks, are potentially detectable tens of kilometers downwind with current technology; distances that are significant for localizing the source of detected atmospheric signals during on-site monitoring or inspection. For a given yield, the bulk permeability of the UNE site and to a lesser extent the depth of detonation appear to be the primary source-term parameters controlling the distance of detection from the detonation point. We find for test-site bulk permeabilities exceeding 1 darcy (10 m) that broad-area surface fluxes of radioxenon gas exhibit exponential dependence on permeability resulting in order-of-magnitude enhancements of surface flux for changes in permeability of only a darcy. Simulations of subsurface transport assuming a canonical detonation-depth-versus-nuclear-yield relationship generally resulted in larger atmospheric signals for shallower, lower-yield explosions allowing downwind detection at distances greater than 1000 km. Additionally, atmospheric simulations suggest that the lowest atmospheric boundary layer heights, such as occur at night, produced concentrations above minimum detectable levels at the greatest distances downwind.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2018.10.015 | DOI Listing |
BMC Plant Biol
January 2025
State Key Laboratory of Tree Genetics and Breeding, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, 650233, PR China.
The slope aspect is an important environmental factor, which can indirectly change the acceptable solar radiation of forests. However, the mechanism of how this aspect changes the underground ecosystem and thus affects the growth of aboveground trees is not clear. In this study, Pinus yunnanensis plantation was taken as the research object, and the effects of soil and microbial characteristics on tree growth under different slope aspects and soil depths were systematically analyzed.
View Article and Find Full Text PDFEcol Appl
January 2025
Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
Intercorrelated aboveground traits associated with costs and plant growth have been widely used to predict vegetation in response to environmental changes. However, whether underground traits exhibit consistent responses remains unclear, particularly in N-rich subtropical forests. Responses of foliar and root morphological and physiological traits of tree and herb species after 8-year N, P, and combined N and P treatments (50 kg N, P, N and P ha year) were examined in leguminous Acacia auriculiformis (AA) and nonleguminous Eucalyptus urophylla (EU) forests in southern China.
View Article and Find Full Text PDFJ Environ Radioact
January 2025
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.
Noble gas transport through geologic media has important applications in the prediction and characterization of measured gas signatures related to underground nuclear explosions (UNEs). Retarding processes such as adsorption can cause significant species fractionation of radionuclide gases, which has implications for measured and predicted signatures used to distinguish radioxenon originating from civilian nuclear facilities or from UNEs. Accounting for the effects of variable water saturation in geologic media on tracer transport is one of the most challenging aspects of modeling gas transport because there is no unifying relationship for the associated tortuosity changes between different rock types, and reactive transport processes such as adsorption that are affected by the presence of water likewise behave differently between gas species.
View Article and Find Full Text PDFFront Public Health
December 2024
School of Preventive Medicine, Shandong First Medical University (Institute of Radiation Medicine, Shandong Academy of Medical Sciences), Jinan, Shandong, China.
Background: Radon, a colorless and odorless radioactive gas, poses serious health risks. It is the second leading cause of lung cancer and notably increases lung cancer risk in smokers. Although previous epidemiological studies have mainly examined lung cancer rates in miners, the effects of radon on genomic stability and its molecular mechanisms are not well understood.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
School of Nuclear and Allied Sciences, University of Ghana, Atomic Campus, P.O. Box LG 80 Legon, Accra, Ghana.
Excavation of terrestrial surface of the Earth could enhance the chance of exposure to radon while gases in the underground get access to escape. This study was aimed to assess the level of radon concentration from soil samples of quarrying sites at Hakim Gara in Ethiopia using CR-39 detectors in sealed container technique. The results of the measured radon concentration level were ranging from 164.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!