Alzheimer's disease (AD) is a great threat for the health and life of elderly people. MicroRNA-128 (miR-128) has been reported to be abnormally expressed in the brain of AD patients and associated with the pathogenesis of AD. Our study aimed to have a deep insight into the roles and molecular basis of miR-128 in the development and progression of AD. The cognitive ability and exploratory behaviors were assessed by morris water maze and open-field tests, respectively. The concentrations of amyloid-β (Aβ) 40, Aβ 42, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-10 and activity of β-secretase and α-secretase were determined by corresponding ELISA commercial kits. RT-qPCR assay was performed to detect miR-128 level and the mRNA expression of peroxisome proliferator-activated receptor gamma (PPARγ), ionized calcium-binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP). Western blot assay was conducted to determine protein expression of PPARγ, amyloid precursor protein (APP), β-APP cleaving enzyme (BACE1), sAPPα and sAPPβ. The effect of miR-128 and PPARγ on amyloid plaque formation was assessed by immunohistochemistry assay. PPARγ mean optical density was determined by immunofluorescence assay. The interaction between miR-128 and PPARγ were validated by bioinformatics analysis and luciferase reporter assay. We found AD mice showed AD-like performance and an increased cerebral cortex Aβ production. MiR-128 expression was upregulated and PPARγ expression was downregulated in cerebral cortex of AD mice. Moreover, PPARγ was a target of miR-128. Additionally, miR-128 knockout or PPARγ upregulation inhibited AD-like performances, amyloid plaque formation, Aβ generation, APP amyloidogenic processing and inflammatory responses in AD mice, while these effects of miR-128 knockout were abrogated by PPARγ inhibitor. The results indicated MiR-128 knockout weakened AD-like performances, and reduced Aβ production and inflammatory responses by targeting PPARγ in AD mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2018.11.004DOI Listing

Publication Analysis

Top Keywords

mir-128 knockout
12
pparγ
11
mir-128
10
alzheimer's disease
8
targeting pparγ
8
pparγ amyloid
8
mir-128 pparγ
8
amyloid plaque
8
plaque formation
8
cerebral cortex
8

Similar Publications

Alzheimer's disease (AD) is a neurodegenerative disease leading to dementia because of complex phathomechanisms like amyloid β (Aβ) aggregation, tau aggregates, and neurofibrillary tangles. Peroxisome proliferator-activated receptor (PPAR) agonists have been reported recently with neuroprotective and anti-inflammatory properties. PPARs belong to the superfamily of nuclear hormone receptors and function as ligand-activated transcription factors.

View Article and Find Full Text PDF

Amounts of studies have revealed long non-coding RNA (lncRNA) was related to the development of gastric cancer. Here, our results suggested the function and regulatory mechanism of CCL2 in gastric cancer. Quantitative polymerase-chain reaction (qPCR) was employed to inspect lncRNA CCL2 and miR-128 expression in normal gastric cell line (GES-1) and tumor cell lines (HGC-27 and MKN-45).

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) have been identified as important participants in the development of atherosclerosis (AS). The present study explored the role of miR-128-3p in the dysfunction of vascular smooth muscle cells (VSMCs) and the underlying mechanism.

Methods: Human VSMCs and ApoE knockout (ApoE) C57BL/6J mice were used to establish AS cell and animal models, respectively.

View Article and Find Full Text PDF

Postmenopausal osteoporosis (PMOP) is a severe health issue faced by postmenopausal women. microRNA-128 (miR-128) is associated with aging, inflammatory signaling, and inflammatory diseases, such as PMOP. It has also been reported to modulate osteogenic/adipogenic differentiation.

View Article and Find Full Text PDF

LINC00963 targeting miR-128-3p promotes acute kidney injury process by activating JAK2/STAT1 pathway.

J Cell Mol Med

May 2020

Department of Urology, Nephropathy Clinical Medical Research Center of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China.

The role of long non-coding RNAs (lncRNAs) in kidney diseases has been gradually discovered in recent years. LINC00963, as an lncRNA, was found to be involved in chronic renal failure. However, the role and molecular mechanisms of LINC00963 engaged in acute kidney injury (AKI) were still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!