Individual characteristics often scale allometrically with organismal body size and the form of this scaling can be influenced by ecological and evolutionary factors. Examining the specific form of this scaling can therefore yield important insights into organismal ecology and evolution and the ability of organisms to respond to future environmental changes. We examine the intraspecific allometric scaling of stomach volume with body mass for 17 species of brachyuran crabs. We also examine how this scaling is influenced by dietary strategy, maximum body size, and activity level, all while controlling for phylogenetic relationships between the species. We show that the slope and intercept of the allometric scaling relationships vary across species and are influenced by all three ecological factors examined here, as well as by evolutionary relationships. These results highlight potential divergent strategies in stomach growth taken by different groups of crabs and highlight potential limitations that may be imposed on the ability of this group of organisms to respond to warming trends expected with climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226199 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207416 | PLOS |
Genomics
January 2025
State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, China. Electronic address:
Gleditsia sinensis Lam. (G. sinensis) as an important species within the Leguminosae family, has been utilized in Chinese medicine for centuries, and its thorns serve as a chief medicinal ingredient.
View Article and Find Full Text PDFViruses
January 2025
Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, Córdoba X5020ICA, Argentina.
The European grapevine moth () poses a significant threat to vineyards worldwide, causing extensive economic losses. While its ecological interactions and control strategies have been well studied, its associated viral diversity remains unexplored. Here, we employ high-throughput sequencing data mining to comprehensively characterize the virome, revealing novel and diverse RNA viruses.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
Chalcone synthase (CHS), the first key structural enzyme in the flavonoid biosynthesis pathway, plays a crucial role in regulating plant responses to abiotic stresses and hormone signaling. However, its molecular functions remain largely unknown in , which is one of the most economically and ecologically important bamboo species and the most widely distributed one in China. This study identified 17 genes in and classified them into seven subgroups, showing a closer evolutionary relationship to genes from rice.
View Article and Find Full Text PDFLife (Basel)
January 2025
Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
The Ohrid trout, , is an endemic species of Lake Ohrid, one of Europe's oldest lakes, located on the Albania-North Macedonia border. This species exhibits distinct morphotypes-, , , and -that differ in morphology and spawning behaviour. However, the extent of their genetic differentiation remains unclear.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin's structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!