Objectives: Miltefosine is currently the only oral drug for visceral leishmaniasis, and although deficiency in an aminophospholipid/miltefosine transporter (MT) is sufficient to elicit drug resistance, very few naturally miltefosine-resistant (MIL-R) strains have yet been isolated. This study aimed to make a detailed analysis of the impact of acquired miltefosine resistance and miltefosine treatment on in vivo infection.

Methods: Bioluminescent versions of a MIL-R strain and its syngeneic parental line were generated by integration of the red-shifted firefly luciferase PpyRE9. The fitness of both lines was compared in vitro (growth rate, metacyclogenesis and macrophage infectivity) and in BALB/c mice through non-invasive bioluminescence imaging under conditions with and without drug pressure.

Results: This study demonstrated a severe fitness loss of MT-deficient parasites, resulting in a complete inability to multiply and cause a typical visceral leishmaniasis infection pattern in BALB/c mice. The observed fitness loss could not be rescued by host immune suppression with cyclophosphamide, whereas episomal reconstitution with a wild-type MT restored parasite virulence, hence linking parasite fitness to MT mutation. Remarkably, in vivo miltefosine treatment or in vitro miltefosine pre-exposure significantly rescued MIL-R parasite virulence. The in vitro pre-exposed MIL-R promastigotes showed a longer and more slender morphology, suggesting an altered membrane composition.

Conclusions: The profound fitness loss of MT-deficient parasites most likely explains the low frequency of MIL-R clinical isolates. The observation that miltefosine can reverse this phenotype indicates a drug dependency of the MT-deficient parasites and emphasizes the importance of resistance profiling prior to miltefosine administration.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jac/dky450DOI Listing

Publication Analysis

Top Keywords

fitness loss
12
mt-deficient parasites
12
miltefosine
8
visceral leishmaniasis
8
miltefosine treatment
8
balb/c mice
8
loss mt-deficient
8
parasite virulence
8
fitness
6
mil-r
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!