The sensitivity of fMRI in identification of eloquent cortical centers in the case of large infiltrative growing tumors and pronounced peritumoral edema may be reduced or significantly limited in some cases. The main cause is an attenuated Blood-Oxygen-Level-Dependent response (BOLD) caused by pathological vascular reactivity and subsequent neurovascular uncoupling of fMRI. In our study, we attempted to overcome these limitations and increase the sensitivity of this technique in identification of eloquent cortical areas adjacent to brain tumors by using vasoreactivity features of a breath-holding test and including these data in the BOLD analysis. Local vasoreactivity using a breath-holding paradigm with the same block design of both motor and speech tests was determined in 5 healthy volunteers and 3 patients in the preoperative period (two patients with high grade gliomas and one patient with single metastasis). A coherence-based model was developed for analysis of BOLD fMRI, which took into account altered hemodynamics in peritumoral zones. Obtained coherence maps demonstrated clinically more significant activation zones that were not seen with standard methods of fMRI processing. Thus, neurovascular uncoupling that is known to affect the accuracy of the BOLD fMRI response adjacent to brain tumors may be partially overcome by including an independent measurement of vasoreactivity using a breath-holding test in the BOLD analysis.

Download full-text PDF

Source
http://dx.doi.org/10.17116/neiro20188205121DOI Listing

Publication Analysis

Top Keywords

neurovascular uncoupling
12
bold fmri
12
vascular reactivity
8
overcome limitations
8
identification eloquent
8
eloquent cortical
8
adjacent brain
8
brain tumors
8
breath-holding test
8
bold analysis
8

Similar Publications

Mild cognitive impairment (MCI) affects nearly 20% of older adults worldwide, with no targetable interventions for prevention. COVID-19 adversely affects cognition, with >70% of older adults with Long COVID presenting with cognitive complaints. Neurovascular coupling (NVC), an essential mechanism of cognitive function, declines with aging and is further attenuated in neurocognitive disorders.

View Article and Find Full Text PDF

Resting-State Functional MRI: Current State, Controversies, Limitations, and Future Directions- Expert Panel Narrative Review.

AJR Am J Roentgenol

December 2024

Department of Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.

Article Synopsis
  • Resting-state functional MRI (rs-fMRI) is gaining traction in clinical settings for brain mapping, but faces challenges with standardization, reliability, and interpretation of results across different medical centers.
  • Key issues include variability in cognitive network representation and the effects of neurovascular uncoupling, which affect the accuracy of language lateralization and overall connectivity detection.
  • Despite these challenges, rs-fMRI is viewed as a valuable complement to task-based fMRI (tb-fMRI) in clinical presurgical contexts and is expected to grow in use as solutions to its limitations are developed.
View Article and Find Full Text PDF

Cerebral autoregulation (CA) is the mechanism that maintains stable cerebral blood flow (CBF) despite fluctuations in systemic blood pressure, crucial for brain homeostasis. Recent evidence highlights distinct regional variations in CA between the anterior (carotid) and posterior (vertebrobasilar) circulations. Non-invasive neuromonitoring techniques, such as transcranial Doppler, transfer function analysis, and near-infrared spectroscopy, facilitate the dynamic assessment of CBF and autoregulation.

View Article and Find Full Text PDF

White adipose tissue (WAT) is a dynamic organ capable of remodelling in response to metabolic state. For example, in response to stimuli such as cold exposure, WAT can develop inducible brown adipocytes ('browning') capable of non-shivering thermogenesis, through concurrent changes to mitochondrial content and function. This is aided by increased neurite outgrowth and angiogenesis across the tissue, providing the needed neurovascular supply for uncoupling protein 1 activation.

View Article and Find Full Text PDF

Rewiring of the glymphatic landscape in metabolic disorders.

Trends Endocrinol Metab

December 2024

Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT, USA. Electronic address:

The incorporation of the glymphatic clearance system in the study of brain physiology aids in the advancement of innovative diagnostic and treatment strategies for neurological disorders. Exploring the glymphatic system across (from) neurological and (to) metabolic diseases may provide a better link between obesity and neurological disorders. Recent studies indicate the role of metabolic dysfunction as a risk factor for cognitive decline and neurological disorders through the disruption of the glymphatic system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!