Cartilage restoration is a desperately needed bridge for patients with symptomatic cartilage lesions. Chondral lesion is a pathology with high prevalence, reaching as much as 63% of general population and 36% among athletes. Despite autologous chondrocyte implantation versatility, it still fails to fully reproduce hyaline articular cartilage characteristics. Mesenchymal stem cells (MSCs) may be isolated from various known tissues, including discarded fragments at arthroscopy such as synovial membrane. Choice of harvesting site is motivated by MSCs' abilities to modulate immunologic and inflammatory response through paracrine communication. Synovial MSCs have a greater proliferation and strong chondrogenic potential than bone and adipose MSCs and a less hypertrophic differentiation than bone MSCs. Good manufacturing practice (GMP) laboratory techniques for human clinical trials are still novel. To our knowledge, there are only two clinical trials in humans published since today. Therefore, this work aimed to isolate and characterize synovial MSCs and evaluated their differentiation properties according to GMP standards. One-gram tissue sample from three patients of synovia was harvested at the beginning of arthroscopy surgery. MSCs were isolated, expanded, and characterized by flow cytometry. It was possible to isolate and expand MSCs cultures from synovia, characterize MSCs by flow cytometry using proper monoclonal antibodies, and differentiate MSCs by coloring technique after chondrogenic, adipogenic, and osteogenic differentiations. Cartilage treatment may benefit from these tissue engineering protocols since arthroscopic procedures are routinely performed for different purposes in a previous stage and a favorable chondronegic differentiation cell lineage may be collected and stored in a less invasive way. Laboratory protocols established according to presented GMP were able to isolate and characterize MSCs obtained from synovia. Impact Statement Articular cartilage restoration is a desperately needed bridge for patients with symptomatic cartilage lesions and it rises as a socioeconomic issue with a considerable economic burden. Synovial mesenchymal stem cells (MSCs) have a greater proliferation rate and strong chondrogenic potential than bone and adipose MSCs and a less hypertrophic differentiation than bone MSCs. To our knowledge, there are only two human clinical trials with good manufacturing practice laboratory techniques for synovial MSCs harvesting and differentiation. Cartilage treatment may benefit from these tissue engineering protocols since arthroscopic procedures are routinely performed for different purposes in a previous stage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306653PMC
http://dx.doi.org/10.1089/ten.TEC.2018.0219DOI Listing

Publication Analysis

Top Keywords

mscs
14
mesenchymal stem
12
stem cells
12
good manufacturing
12
articular cartilage
12
synovial mscs
12
clinical trials
12
synovial mesenchymal
8
cartilage
8
cartilage restoration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!